Review Article
  • Fabrication and Applications of Polyphenylene Sulfide (PPS) Composites: A Short Review
  • Minsik Choi*,**, Jungrok Lee*, Seongwoo Ryu**, Bon-Cheol Ku*

  • * Carbon Composite Materials Research Center, Korea Institute of Science and Technology
    *† Carbon Composite Materials Research Center, Institute of Advance Composite Materials, Korea Institute of Science and Technology
    ** Department of Advanced Materials Science and Engineering, The University of Suwon

  • 폴리페닐렌설파이드(PPS) 복합소재 제조 및 응용
  • 최민식*,** · 이정록* · 류성우** · 구본철*

References
  • 1. Ashok, S.R., Kailash, R.N., and Sandeep, A.W., “Polyphenylene Sulfide (PPS): State of the Art and Applications”, Reviews in Chem-ical Engineering, Vol. 29, No. 6, 2013, pp. 471-489.
  •  
  • 2. Silvestre, C., Di Pace, E., Napolitano, R., Pirozzi, B., and Cesario, G., “Crystallization, Morphology, and Thermal Behavior of Poly(p-phenylene sulfide)”, Journal of Polymer Science: Part B: Polymer Physics, Vol. 39, 2001, pp. 415-424.
  •  
  • 3. Lhymn, C., and Bozolla, J., “Friction and Wear of Fiber Reinforced pps Composites”, Polymers for Advanced Technologies, Vol. 7, 1987, pp. 451-461.
  •  
  • 4. Schoch, K.F. Jr., Chance, J.F., and Pfeiffer, K.E., “Sulfur Trioxide-doped Poly(phenylene sulfide)”, Macromolecules, Vol. 18, 1985, pp. 2389-2394.
  •  
  • 5. Friedel, C., and Crafts, J.M., “On a New General Method of Synthesis of Aromatic Combinations (second dissertation)”, Annales de chimie et de physique, Vol. 14, 1888, pp. 433-472.
  •  
  • 6. Genvresse, M.P., Bulletin de la Société Chimique de France, Vol. 3, No. 17, 1897, p. 599.
  •  
  • 7. Macallum, A.D., “A Dry Synthesis of Aromatic Sulfides; Phenylene Sulfide Resins”, The Journal of Organic Chemistry, Vol. 13, 1948, pp. 154-159.
  •  
  • 8. Edmonds Jr., J.T., and Hill Jr., H.W., U. S. Patent, 3,354,129, 1967.
  •  
  • 9. Tsuchida, E., Yamamoto, K., Nishide, H., Yoshida, S., and Jikei, M., “Polymerization of Diphenyl Disulfide by the S-S Bond Cleav-age with a Lewis Acid: A Novel Preparation Route to Poly(p-phenylene sulfide)”, Macromolecules, Vol. 23, 1990, pp. 2101-2106.
  •  
  • 10. Tsuchida, E., Yamamoto, K., Nishide, H., and Yoshida, S., “Poly(p-phenylene sulfide)-yielding Polymerization of Diphenyl Disulfide by S-S Bond Cleavage with a Lewis Acid”, Macromolecules, Vol. 20, 1987, pp. 2030-2031.
  •  
  • 11. Tsuchida, E., Yamamoto, K., Jikei, M., and Nishide, H., “Oxidative Polymerization of Diphenyl Disulfides with Quinones: For-mation of Ultrapure Poly(p-phenylene sulfide)s”, Macromolecules, Vol. 23, 1990, pp. 930-934.
  •  
  • 12. Ding, Y., and Hay, A.S., “Novel Synthesis of Poly(p-phenylene sulfide) from Cyclic Disulfide Oligomers”, Macromolecules, Vol. 29, 1996, pp. 4811-4812.
  •  
  • 13. Zimmerman, D.A., Koenig, J.L., and H. Ishida, “Polymerization of Poly(p-phenylene sulfide) from a Cyclic Precursor”, Polymer, Vol. 37, 1996, pp. 3111-3116.
  •  
  • 14. Jikei, M., Hu, Z., Kakimoto, M., and Imai, Y., “Synthesis of Hyperbranched Poly(phenylene sulfide) via a Poly(sulfonium cation) Precursor”, Macromolecules, Vol. 29, 1996, pp. 1062-1064.
  •  
  • 15. Mellace, A., Hanson, J.E., and Griepenburg, J., “Hyperbranched Poly(phenylene sulfide) and Poly(phenylene sulfone)”, Chemistry of Materials, Vol. 17, 2005, pp. 1812-1817.
  •  
  • 16. Tsuchida, E., Shouji, E., and Yamamoto, K., “Synthesis of High-molecular-weight Poly(phenylene sulfide) by Oxidative Polymeriza-tion via Poly(sulfonium cation) from Methyl Phenyl Sulfoxide”, Macromolecules, Vol. 26, 1993, pp. 7144-7148.
  •  
  • 17. Tsuchida, E., Suzuki, F., Shouji, E., and Yamamoto, K., “Synthesis of Poly(phenylene sulfide) by O2 Oxidative Polymerization of Methyl Phenyl Sulfide”, Macromolecules, Vol. 27, 1994, pp. 1057-1060.
  •  
  • 18. Lee, Y.R., Cha, I.H., and Cho, J.S., “Manufacturing Prcess for Poly(arylene sulfide)”, KR Patent, 10-1183780, 2012.
  •  
  • 19. Rule, M., David, R.F., Joseph, J.W., and Jerry, S.F., “Copoly (Arylene Sulfidex-disulfide)”, US Patent, 4,786,713, 1988.
  •  
  • 20. Rule, M., Donald, W.L., Thomas Jr., H.L., and Gerald, C.T., “Processes for Preparing Iodinated Aromatic Compounds”, US Petent, 4,746,758, 1988.
  •  
  • 21. Shin, Y.J., Kim, S.G., Lim, J.B., Cho, J.S., and Cha, I.H., “Process for Preparing Polyarylene Sulfide having Lower Content of Isolat-ed Iodine”, KR Patent, 10-1712273, 2017.
  •  
  • 22. Lee, Y.R., Cha, I.H., Shin, Y.J., and Cho, J.S., “Polyarylene Sulfide Resin with Excellent Luminosity and Preparation Method There-of”, US Patent, 8,957,182, 2015.
  •  
  • 23. Gu, J.W., Du, J.J., Dang, J., Geng, W.C., Hu, S.H., and Zhang, Q.Y., “Thermal Conductivities, Mechanical and Thermal Properties of Graphite Nanoplatelets/polyphenylene Sulfide Composites”, RSC Advances, Vol. 4, 2014, pp. 22101-22105.
  •  
  • 24. Kim, J.C., and Kim, Y.H., “Development Status and Use of PPS Fiber”, Fiber Technology and Industry, Vol. 11, No. 4, 2007, pp. 271-278.
  •  
  • 25. Seymour, R.B., and Kirshenbaum, G.S. (Ed.), High Performance Polymers: Their Origin and Development, Elsevier Sci. Pub. Co., NY, 1986, pp. 135-148.
  •  
  • 26. Sobia, I., Muhammad, S., Ayesha, K., Sedra, T.M., Jaweria, A., and Iram, B., “A Review Featuring Fabrication, Properties and Appli-cations of Carbon Nanotubes (CNTs) Reinforced Polymer and Epoxy Nanocomposites”, Nature, Vol. 358, 1992, pp. 220-222.
  •  
  • 27. Michele, T.B., and Yurii, K.G., “Recent Advances in Research on Carbon Nanotube-Polymer Composites”, Advanced Materials, Vol. 22, 2010, pp. 1672-1688.
  •  
  • 28. Han, M.S., Lee, Y.K., Lee, H.S., Yun, C.H., and Kim, W.N., Electrical, “Morphological and Rheological Properties of Carbon Nanotube Composites with Polyethylene and Poly(phenylene sulfide) by Melt Mixing”, Chemical Engineering Science, Vol. 64, 2009, pp. 4649-4656.
  •  
  • 29. Zhang, X.P., Jia, L.C., Zhang, G., Yan, D.X., and Li, Z.M., “A Highly Efficient and Heat-resistant Electromagnetic Interference Shielding Carbon Nanotube-poly(phenylene sulfide) Composite via Sinter Molding”, Journal of Materials Chemistry C, Vol. 6, 2018, pp. 10760.
  •  
  • 30. Lee, J.H., Choi, K.D., Lee, S.H., and Kim, J.S., “PPS Resin Composition and Method for Preparing PPS Fibers”, KR Patent, 10-1584849, 2016.
  •  
  • 31. Chae, B.J., Kim, D.H., Jeong, I.S., Hahn, J.R., and Ku, B.C., “Electrical and Thermal Properties of Poly(p-phenylene sulfide) Reduced Graphite Oxide Nanocomposites”, Carbon Letters, Vol. 13, No. 4, 2012, pp. 221-225.
  •  
  • 32. Zhao, Y.F., Xiao, M., Wang, S.J., Ge, X.C., and Meng, Y.Z., “Preparation and Properties of Electrically Conductive PPS/expanded Graphite Nanocomposites”, Composite Science and Technology, Vol. 67, 2007, pp. 2528-2534.
  •  
  • 33. Park, O.K., Lee, S.H., Ku, B.C., and Lee, J.H., “A Review of Graphene-based Polymer Nanocomposites”, Polymer Science and Tech-nology, Vol. 22, No. 5, 2011, pp. 467-473.
  •  
  • 34. Jung, K.H., Kim, H.J., Kim, M.H., and Lee, J.C., “Preparation of Poly(phenylene sulfide)/Nylon 6 Grafted Graphene Oxide Nano-composites with Enhanced Mechanical and Thermal Properties”, Macromolecular Research, Vol. 28, 2020, pp. 241-248.
  •  
  • 35. Zhang, M., Wang, H., Li, Z., and Cheng, B., “Exfoliated Graphite as a Filler to Improve Poly(phenylene sulfide) Electrical Conduc-tivity and Mechanical Properties”, RSC Advances, Vol. 5, 2015, pp. 13840.
  •  
  • 36. Zhang, K., Zhang, G., Liu, B., Wang, X., Long, S., and Yang, J., “Effect of Aminated Polyphenylene Sulfide on the Mechanical Properties of Short Carbon Fiber Reinforced Polyphenylene Sulfide Composites”, Composites Science and Technology, Vol. 98, 2014, pp. 57-63.
  •  
  • 37. Durmaz, B.U., and Aytac, A., “Characterization of Carbon Fiber-reinforced Poly(phenylene sulfide) Composites Prepared with Vari-ous Compatibilizers”, Journal of Composite Materials, Vol. 54, No. 1, 2020, pp. 89-100.
  •  
  • 38. Ren, H.H., Xu, D.X., Yan, G.M., Zhang, G., Wang, X.J., Long, S.R., and Yang, J., “Effect of Carboxylic Polyphenylene Sulfide on the Micromechanical Properties of Polyphenylene Sulfide/carbon Fiber Composites”, Composites Science and Technology, Vol. 146, 2017, pp. 65-72.
  •  
  • 39. Park, M., Park, J.H., Yang, B.J., Cho, J.H., Kim, S.Y., and Jung, I.H., “Enhanced Interfacial, Electrical, and Flexural Properties of Polyphenylene Sulfide Composites Filled with Carbon Fibers Modified by Electrophoretic Surface Deposition of Multi-walled Carbon Nanotubes”, Composites Part A, Vol. 109, 2018, pp. 124-130.
  •  
  • 40. Zuo, P., Benevides, R.C., Laribi, M.A., Fitoussi, J., Shirinbayan, M., Bakir, F., and Tcharkhtchi, A., “Multi-scale Analysis of the Effect of Loading Conditions on Monotonic and Fatigue Behavior of a Glass Fiber Reinforced Polyphenylene Sulfide (PPS) Composite”, Composites Part B, Vol. 145, 2018, pp. 173-181.
  •  
  • 41. Zhao, L., Yu, Y., Huang, H., Yin, X., Peng, J., Sun, J., Huang, L., Tang, Y., and Wang, L., “High-performance Polyphenylene Sul-fide Composites with Ultra-high Content of Glass Fiber Fabrics”, Composites Part B, Vol. 174, 2019, pp. 106790
  •  
  • 42. Ren, H.H., Xu, D.X., Yu, T., Yang, J.C., Zhang, G., Wang, X.J., and Yang, J., “Effect of Polyphenylene Sulfide Containing Amino Unit on Thermal and Mechanical Properties of Polyphenylene Sulfide/glass Fiber Composites”, Journal of Applied Polymer Science, Vol. 135, No. 6, 2018, pp. 45804.
  •  
  • 43. Borzacchiello, A., Autiello, M.S., Russo, L., and Nicolais, L., Wiley Encyclopedia of Composites, John Wiley & Sons, Inc., 2012.
  •  
  • 44. Haddadi-Asl, V., Kazacos, M., and Skyllas-Kazacos, M., “Carbon-polymer Composite Electrodes for Redox Cells”, Journal of Applied Polymer Science, Vol. 57, 1995, pp. 1455-1463.
  •  
  • 45. Hassan, N.U., Tunaboylu, B., and Soydan, A.M., “A Competitive Design and Material Consideration for Fabrication of Polymer Electrolyte Membrane Fuel Cell Bipolar Plates”, Designs, Vol. 3, No. 1, 2019, pp. 13.
  •  
  • 46. Song, L.N., Xiao, M., and Meng, Y.Z., “Electrically Conductive Nanocomposites of Aromatic Polydisulfide/expanded Graphite”, Composites Science and Technology, Vol. 66, 2006, pp. 2156-2162.
  •  
  • 47. Dhakate, S.R., Sharma, S., Borah, M., Mathur, R.B., and Dhami, T.L., “Development and Characterization of Expanded Graph-ite-based Nanocomposite as Bipolar Plate for Polymer Electrolyte Membrane Fuel Cells (PEMFCs)”, Energy & Fuels, Vol. 22, 2008, pp. 3329-3334.
  •  
  • 48. Lee, J.H., Jang, Y.K., Hong, C.E., Kim, N.H., Li, P., and Lee, H.K., “Effect of Carbon Fillers on Properties of Polymer Composite Bipolar Plates of Fuel Cells”, Journal of Power Sources, Vol. 193, 2009, pp. 523-529.
  •  
  • 49. Chunhui, S., Mu, P., and Runzhang, Y., “The Effect of Particle Size Gradation of Conductive Fillers on the Conductivity and the Flexural Strength of Composite Bipolar Plate”, International Journal of Hydrogen Energy, Vol. 33, 2008, pp. 1035-1039.
  •  
  • 50. Caglar, B., Fischer, P., Kauranen, P., Karttunen, M., and Elsner, P., “Development of Carbon Nanotube and Graphite Filled Poly-phenylene Sulfide Based Bipolar Plates for All-vanadium Redox Flow Batteries”, Journal of Power Sources, Vol. 256, 2014, pp. 88-95.
  •  
  • 51. Kim, N.H., Kuila, T., Kim, K.M., Nah, S.H., and Lee, J.H., “Material Selection Windows for Hybrid Carbons/poly(phenylene sulfide) Composite for Bipolar Plates of Fuel Cell”, Polymer Testing, Vol. 31, No. 4, 2012, pp. 537-545.
  •  
  • 52. Park, H.J., Woo, J.S., and Park, S.Y., “Poly(phenylene sulfide)-graphite Composites for Bipolar Plates with Preferred Morphological Orientation”, The Korean Journal of Chemical Engineering, Vol. 36, No. 12, 2019, pp. 2133-2142.
  •  
  • 53. Muzzy, J.D., and Kays, A.O., “Thermoplastic vs Thermosetting Structural Composites”, Polymer Composites, Vol. 5, No. 3, 1984, pp. 169-72.
  •  
  • 54. Sorathia, U., Beck, C., and Dapp, T., “Residual Strength of Composites during and after Fire Exposure”, Journal of Fire Sciences, Vol. 11, 1993, pp. 255-270.
  •  
  • 55. Benoit, V., Cédric, L., and Alexis, C., “Post Fire Behavior of Carbon Fibers Polyphenylene Sulfide- and Epoxy-based Laminates for Aeronautical Applications: A Comparative Study”, Materials and design, Vol. 63, 2014, pp. 56-68.
  •  
  • 56. Lim, J.C., Park, Y.W., and Kim, H.C., “Study on Manufacturing PCT/PPS Flame Retardant Fiber by Sheath/Core Conjugate Spin-ning”, Fibers and Polymers, Vol. 21, No. 3, 2020, pp. 498-504.
  •  
  • 57. Park, S.Y., Kim, H.M., Kim, S.Y., and Youn, J.R., “Synergistic Improvement of Thermal Conductivity of Thermoplastic Composites with Mixed Boron Nitride and Multi-walled Carbon Nanotube Fillers”, Carbon, Vol. 50, 2012, pp. 4830-4838.
  •  
  • 58. Pernot, G., Stoffel, M., Savic, I., Pezzoli, F., Chen, P., Savelli, G., Jacquot, A., Schumann, J., Denker, U., Mönch, I., Deneke, Ch., Schmidt, O.G., Rampnoux, J.M., Wang, S., Plissonnier, M., Rastelli, A., Dilhaire, S., and Mingo, N., “Precise Control of Thermal Conductivity at the Nanoscale through Individual Phonon-scattering Barriers”, Nature Materials, Vol. 9, 2010, pp. 491-495.
  •  
  • 59. Shaikh, S., Lafdi, K., and Silverman, E., “The Effect of a CNT Interface on the Thermal Resistance of Contacting Surfaces”, Car-bon, Vol. 45, No. 4, 2007, pp. 695-703.
  •  
  • 60. Gu, J., Guo, Y., Yang, X., Liang, C., Geng, W., Tang, L., Li, N., and Zhang, Q., “Synergistic Improvement of Thermal Conductivi-ties of Polyphenylene Sulfide Composites Filled with Boron Nitride Hybrid Fillers”, Composites: Part A, Vol. 95, 2017, pp. 267-273.
  •  

This Article

Correspondence to

  • Bon-Cheol Ku
  • Carbon Composite Materials Research Center, Korea Institute of Science and Technology

  • E-mail: cnt@kist.re.kr