Original Article
  • 2D Layered Ti3C2Tx Negative Electrode based Activated Carbon Woven Fabric for Structural Lithium Ion Battery
  • Sanghee Nam*, Sima Umrao*, Saewoong Oh*, Il-Kwon Oh*†

  • * Department of Mechanical Engineering, KAIST, Daejeon 34141, Korea
    *† Department of Mechanical Engineering, KAIST, Daejeon 34141, Korea

  • 카본우븐패브릭 기반 2D 구조의 Ti3C2Tx 배터리음극소재
  • 남상희* · 시마 엄라오* · 오세웅* · 오일권*†

References
  • 1. Dunn, B., Kamath, H., and Tarascon, J., “Electrical Energy Storage for the Grid: A Battery of Choices,” Science, Vol. 334, Iss. 6058, 2011, pp. 928-935.
  •  
  • 2. Salanne, M., Rotenberg, B., Naoi, K., Kaneko, K., Taberna, P.L., Grey, C.P., Dunn, B., and Simon, P., “Efficient Storage Mechanisms for Building Better Supercapacitors,” Nature Energy, Vol. 1, Iss. 6, 2016.
  •  
  • 3. Nitta, N., Wu, F., Lee, J.T., and Yushin, G., “Li-ion Battery Materials: Present and Future”, Materials Today, Vol. 18, Iss. 5, 2015, pp. 252-264.
  •  
  • 4. Zhu, J., Yang, D., Yin, Z., Yan, Q., and Zhang, H., “Graphene and Graphene-Based Materials for Energy Storage Applications,” Small, Vol. 10, Iss. 17, 2014, pp. 3480-3498.
  •  
  • 5. Sheberla, D., Bachman, J.C., Elias, J.S., Sun, C.J., Shao-Horn, Y., and Dincă, M., “Conductive MOF Electrodes for Stable Supercapacitors with High Areal Capacitance,” Nature Energy, Vol. 16, Iss. 2, 2016, pp. 220-224.
  •  
  • 6. Bonaccorso, F., Colombo, L., Yu, G., Stoller, M., Tozzini, V., Ferrari, A.C., Ruoff, R.S., and Pellegrini, V., “Graphene, Related Two-dimensional Crystals, and Hybrid Systems for Energy Conversion and Storage,” Science, Vol. 347, Issue 6217, 2015.
  •  
  • 7. Anasori, B., Lukatskaya, M.R., and Gogotsi, Y., “2D Metal Carbides and Nitrides (MXenes) for Energy Storage,” Nature Reviews Materials, Vol. 2, Iss. 2, 2017.
  •  
  • 8. Wang, X., Kajiyama, S., Iinuma, H., Hosono, E., Oro, S., Moriguchi, I., Okubo, M., and Yamada, A., “Pseudocapacitance of MXene Nanosheets for High-power Sodium-ion Hybrid Capacitors,” Nature Communications, Vol. 6, Iss. 1, 2015.
  •  
  • 9. Chen, D., Chen, W., Ma, L., Ji, G., Chang, and K., Lee, J.Y., “Graphene-like Layered Metal Dichalcogenide/graphene Composites: Synthesis and Applications in Energy Storage and Conversion,” Materials Today, Vol. 17, Iss. 4, 2014, pp. 184-193
  •  
  • 10. Pan, H., Hu, Y.S., and Chen, L., “Room-temperature Stationary Sodium-ion Batteries for Large-scale Electric Energy Storage,” Energy & Environmental Science, Vol. 6, Iss. 8, 2013, pp. 2338.
  •  
  • 11. Shein, I.R., and Ivanovskii, A.L., “Graphene-like Nanocarbides and Nanonitrides of d Metals (MXenes): Synthesis, Properties and Simulation,” Micro & Nano Letters, Vol. 8, Iss. 2, 2013, pp. 59-62.
  •  
  • 12. Ivanovskii, A.L., and Enyashin, A.N., “Graphene-like Transition-metal Nanocarbides and Nanonitrides,” Russian Chemical Reviews, Vol. 82, Iss. 8, 2013, pp. 735-746.
  •  
  • 13. Naguib, M., Kurtoglu, M., Presser, V., Lu, J., Niu, J., Heon, M., Hultman, L., Gogotsi, Y., and Barsoum, M.W., “Two-Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2,” Advanced Materials, Vol. 23, Iss. 37, 2011, pp. 4248-4253.
  •  
  • 14. Li, R., Zhang, L., Shi, L., and Wang, P., “MXene Ti3C2: An Effective 2D Light-to-Heat Conversion Material,” ACS Nano, Vol. 11, Iss. 4, 2017, pp. 3752-3759.
  •  
  • 15. Xie, Y., Naguib, M., Mochalin, V.N., Barsoum, M.W., Y. Gogotsi, X. Yu, Nam, K.W., Yang, X.Q., Kolesnikov, A.I., and Kent, P.R.C., “Role of Surface Structure on Li-Ion Energy Storage Capacity of Two-Dimensional Transition-Metal Carbides,” Journal of the American Chemical Society, Vol. 136, Iss. 17, 2014, pp. 6385-6394.
  •  
  • 16. Xie, Y., Dall’Agnese, Y., Naguib, M., Gogotsi, Y., Barsoum, M.W., Zhuang, H.L., and Kent, P.R.C., “Prediction and Characterization of MXene Nanosheet Anodes for Non-Lithium-Ion Batteries,” ACS Nano, Vol. 8, Iss. 9, 2014, pp. 9606-9615.
  •  
  • 17. Er, D., Li, J., Naguib, M., Gogotsi, Y., and Shenoy, V.B., “Ti3C2 MXene as a High Capacity Electrode Material for Metal (Li, Na, K, Ca) Ion Batteries,” ACS Applied Materials & Interfaces, Vol. 6, Iss. 14, 2014, pp. 11173-11179.
  •  
  • 18. Peng, Q., Guo, J., Zhang, Q., Xiang, J., Liu, B., Zhou, A., Liu, R., and Tian, Y., “Unique Lead Adsorption Behavior of Activated Hydroxyl Group in Two-Dimensional Titanium Carbide,” Journal of the American Chemical Society, Vol. 136, Iss. 11, 2014, pp. 4113-4116.
  •  
  • 19. Dillon, A.D., Ghidiu, M.J., Krick, A.L., Griggs, J., May, S.J., Gogotsi, Y., Barsoum, M.W., and Fafarman, A.T., “Highly Conductive Optical Quality Solution‐Processed Films of 2D Titanium Carbide,” Advanced Functional Materials, Vol. 26, Issue 23 2016, pp. 4162-4168.
  •  
  • 20. Ghidiu, M., Lukatskaya M.R., Zhao M.Q., Gogotsi, Y., and Barsoum, M.W., “Conductive Two-dimensional Titanium Carbide ‘clay’ with High Volumetric Capacitance”, Nature, Vol. 516, 2015, pp. 78.
  •  
  • 21. Tang, Q., Zhou, Z., and Shen, P., “Are MXenes Promising Anode Materials for Li Ion Batteries? Computational Studies on Electronic Properties and Li Storage Capability of Ti3C2 and Ti3C2X2 (X=F, OH) Monolayer”, Journal of the American Chemical Society, Vol. 134, Iss. 40, 2012, pp. 16909-16916.
  •  
  • 22. Yamada, T., Zettsu, N., Kim, D., Shiiba, H., Teshima, K., Sánchez-Santolino, G., Ishikawa, R., Ikuhara, Y., and Kimijima, T., “Full Picture Discovery for Mixed-fluorine Anion Effects on High-voltage Spinel Lithium Nickel Manganese Oxide Cathodes”, Journal Article Published in NPG Asia Materials, Vol. 9, 2017, pp. 398.
  •  
  • 23. Zuo, T.T., Wu, X.W., Yang, C.P., Yin, Y.X., Ye, H. Li, N.W., and Guo, Y.G., “Graphitized Carbon Fibers as Multifunctional 3D Current Collectors for High Areal Capacity Li Anodes”, Advanced Materials, Vol. 29, 2017, pp. 1700389.
  •  
  • 24. Hsu, C.H., Lin, H.H. Liu, Y.H., and Lin, H.P., “Carbon Fibers as Three-Dimensional Current Collectors for Silicon/Reduced Graphene Oxide Lithium Ion Battery Anode with Improved Rate Performance and Cycle Life”, New Journal of Chemistry, Vol. 42, 2018, pp. 9058-9064.
  •  
  • 25. Chen, P., Bakenov, Z., Wang, Q., Zhang, Y., Zhao, Y., and Konarov, A., “Three-dimensional Carbon Fiber as Current Collector for Lithium/sulfur Batteries”, Ionics, Vol. 20, Iss. 6, 2014, pp. 803–808.
  •  
  • 26. Anasori, B., Lukatskaya, M.R., and Gogotsi, Y., “2D Metal Carbides and Nitrides (MXenes) for Energy Storage”, Nature Reviews Materials, Vol. 2, 2017, pp. 16098.
  •  
  • 28. Jin, Q., Zhang, N., Zhu, C.C., Gao H., and Zhang, X.T., “Rationally Designing S/Ti3C2Tx as a Cathode Material with an Interlayer for High-rate and Long-cycle Lithium–sulfur Batteries”, Nanoscale, Vol. 10, 2018, pp. 16935.
  •  
  • 29. Mendoza-Sánchez, B., and Gogotsi, Y., “Synthesis of Two-Dimensional Materials for Capacitive Energy Storage”, Advanced Materials, Vol. 28, Iss. 29, 2016, pp. 6104-6135.
  •  
  • 30. Yu, X.Q., Sun, J.P., Tang, K., Li, H., Huang, X.J., Dupont, L., and Maier, J., “Reversible Lithium Storage in LiF/Ti Nanocomposites”, Physical Chemistry Chemical Physics, Vol. 11, 2009, pp. 9497.
  •  

This Article

Correspondence to

  • Il-Kwon Oh
  • Department of Mechanical Engineering, KAIST, Daejeon 34141, Korea

  • E-mail: ikoh@kaist.ac.kr