면외전단하중(anti-plane shear loading)을 받는 기능경사 압전 세라믹 무한 스트립(functionally graded piezoelectric ceramic strip)의 상하 양쪽 끝단의 중앙에 평행하게 존재하는 유한한 크기의 균열(Griffith crack)에 대한 특이응력(singular stress)과 전기장(electric field)을 선형 압전 이론(theory of linear piezoelectricity)을 이용하여 결정한다. 푸리에 변환(Fourier transform)을 이용하여 복합적분 방정식을 구성하여, 이를 제2종 Fredholm 적분 방정식(Fredholm integral equation of the second kind) 으로 표현한다. 또한 응력세기계수(stress intensity factor)와 에너지 해방률(energy release rate)에 대한 수치 결과를 제시하였다.
면외전단하중(anti-plane shear loading)을 받는 기능경사 압전 세라믹 무한 스트립(functionally graded piezoelectric ceramic strip)의 상하 양쪽 끝단의 중앙에 평행하게 존재하는 유한한 크기의 균열(Griffith crack)에 대한 특이응력(singular stress)과 전기장(electric field)을 선형 압전 이론(theory of linear piezoelectricity)을 이용하여 결정한다. 푸리에 변환(Fourier transform)을 이용하여 복합적분 방정식을 구성하여, 이를 제2종 Fredholm 적분 방정식(Fredholm integral equation of the second kind) 으로 표현한다. 또한 응력세기계수(stress intensity factor)와 에너지 해방률(energy release rate)에 대한 수치 결과를 제시하였다.
Keywords: