A multifield variational formulation is developed for the finite element (FE) cross-sectional analysis of composite beams. The cross-sectional warping displacements and sectional stresses are considered to be the primary variables through the application of Reissner's partially mixed principle. The warping displacements are modeled using generic FE shape functions with nonlinear distribution over the beam section. A generalized Timoshenko level stiffness matrix is derived which incorporates the effects of elastic couplings, transverse shear, and Poisson's deformations. The accuracy of the present analysis is validated for the stiffness constants and elastostatic responses of composite box beams which correlate well with the experimental data and other state-of-the-art approaches.
Keywords: Composite beam, Cross-section, Multifield principle, 3D warping