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Multifield Variational Finite Element Sectional Analysis of 
Composite Beams
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ABSTRACT: A multifield variational formulation is developed for the finite element (FE) cross-sectional analysis of
composite beams. The cross-sectional warping displacements and sectional stresses are considered to be the primary
variables through the application of Reissner’s partially mixed principle. The warping displacements are modeled using
generic FE shape functions with nonlinear distribution over the beam section. A generalized Timoshenko level
stiffness matrix is derived which incorporates the effects of elastic couplings, transverse shear, and Poisson’s
deformations. The accuracy of the present analysis is validated for the stiffness constants and elastostatic responses of
composite box beams which correlate well with the experimental data and other state-of-the-art approaches.
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1. INTRODUCTION

Composite structures offer a wide variety of advantages in
various engineering fields due to their high stiffness-to-weight
ratio. The composite materials provide a convenient way to
tailor the structural characteristics by defining the required ply
layup. Beam theories have gained a lot of attention in the past
decades due to the efficient modeling and analysis of com-
posite slender structures. The three-dimensional (3D) analysis
of composite beams is generally decomposed into two-dimen-
sional (2D) sectional and one-dimensional (1D) beam anal-
yses [1,2]. Such a decomposition approach is useful for the
preliminary design and optimization of slender composite
structures. 

Beam cross-sectional analyses are mainly categorized into
FE and analytical formulations based on the implementation.
The former offers advantage in that any arbitrary geometry
with complex material distribution can be modeled in detail
while the latter is limited to only simple cross-sections.
Giavotto et al. [3] developed a FE cross-sectional analysis for
generally anisotropic beams based on central and extremity
solutions. The central solution was used to compute a Timos-
henko level stiffness matrix with elastic couplings. Cesnik and

Hodges [4] proposed a variational asymptotic beam sectional
analysis to compute stiffness constants formulated based on
the variational asymptotic method of Berdischevsky [5].
Chandra et al. [6] and Chandra and Chopra [7] developed an
analytical formulation with simple expressions for sectional
stiffness constants. They also conducted experimental tests to
investigate the effect of elastic couplings on the 1D elastostatic
response of composite beams and blades. Jung et al. [8] pre-
sented a mixed shell-wall based analytical force-displacement
approach to determine the sectional stiffness constants at
Timoshenko-Vlasov level.

Most of the studies mentioned previously adopted a dis-
placement-based approach with displacements as the only pri-
mary variables which typically results in low accuracy of
stresses. Multifield formulations as proposed by Reissner [9]
involving stresses as additional unknown variables can over-
come this limitation with more computational effort. In addi-
tion, implementation of cross-sectional formulation into a FE
analysis can offer the accurate modeling of complex geometric
features and composite material layups of beams.

The present work deals with the development of a FE based
multifield variational sectional analysis code (MVSAC) for
nonhomogeneous anisotropic beams with arbitrary geometry
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and material distribution. The sectional stresses (called as reac-
tive stresses [9]) are assumed to be unknowns in addition to 3D
sectional warping displacements. The transverse shear and
Poisson’s deformation effects are inherently taken into account
through the 3D warping. A 6×6 generalized Timoshenko stiff-
ness matrix is obtained incorporating the classical and non-
classical elastic couplings. The stiffness constants and 1D
elastostatic response computed by the present analysis is val-
idated for composite beams with elastic couplings.

2. MULTIFIELD CROSS-SECTIONAL ANAL-
YSIS

The present formulation is applicable for straight and pris-
matic beams. The schematic of the beam cross-section is
shown in Fig. 1, indicating sectional warping and beam gen-
eralized displacements. The strain-displacement and semi-
inverted material constitutive relations are derived first which
are discretized using FE shape functions. The governing equa-
tions are formulated to solve for the 3D warping and sectional
stresses which are utilized to determine a generalized 6×6
Timoshenko stiffness matrix. A brief description of the present
multifield formulation is provided next.

2.1 Kinematical relations
The 3D displacements u of an arbitrary point on the beam

cross-section are described as the sum of the beam reference
line displacements  and the sectional warp-
ing displacements , given as

  (1)

where the beam reference line displacements are defined as

 (2)

with q and B given by

(3)

Here,  represent the translations, and φ1 φ2 φ3 rep-
resent the rotations of the beam cross-section.

The warping displacements defined in Eq. (1) are six times
redundant which can be eliminated through constraints
defined in [10], given as

 (4)

where A denotes the cross-sectional area, and the operator
matrix  is given by 

(5)

With the assumptions of small local rotations and small
strains at the cross-sectional level, the linear strain-displace-
ment relations are stated as

  (6a)

  (6b)

where the subscript s represents the sectional stresses, the sub-
script n indicates the stresses on the planes normal to the
cross-section, the superscript a indicates the active compo-
nents computed through above strain-displacement relations,
and ()' denotes the derivative with respect to the axial coor-
dinate ξ1. The variable Γ represents the generalized strain
measures, and  and  are the operator matrices defined as

(7)

,

 

Here, γ1 is the extensional strain, γ2 and γ3 are the transverse
shear strains, κ1 is the twist curvature, κ3 and κ3 are the bend-
ing curvatures. The matrix  is given as

 (8)
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Fig. 1. Flowchart for the present cross-sectional analysis 
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2.2 Semi-inverted material constitutive relations
For a linearly elastic anisotropic material, the constitutive

relations in the material coordinate system are defined using
generalized Hooke’s law as

 (9)

where σm denotes the stress vector, εm denotes the strain vec-
tor, and Cm is the material constitutive matrix. These consti-
tutive relations can be transformed to the beam coordinate
system through transformation by fiber angle and fiber plane
angle for composite materials. The sectional stresses (one nor-
mal and two transverse shear components) in the present for-
mulation are considered to be unknowns, and hereafter called
as reactive sectional stresses. Therefore, the material constitutive
relations are expressed in a semi-inverted form as given by

(10)

where the superscript r denotes the reactive sectional stresses
which are directly computed from the multifield formulation
whereas the superscript a denotes the remaining active stresses
computed through kinematical relations.

2.3 Finite element discretization
The warping displacements and the reactive sectional

stresses are discretized using isoparametric FE shape functions
as

(11a)

(11b)

where  and  are respectively the nodal values of warping
displacements and reactive stresses, and N

ψ
 and N

σ
 are the

respective FE shape functions.
The warping constraints from Eq. (4) are expressed in dis-

cretized form as

(12)

where D
ψ
 is the warping constraint matrix.

2.4 Governing equations
The present multifield formulation considers sectional

stresses and displacements as primary variables. The variation
of total energy per unit beam length is expressed as

(13)

where δUs is the variation of cross-sectional strain energy, δW
is the variation of external work due to applied loads, and δL is

the variation of warping constraints obtained from Eq. (12)
using Lagrange multipliers Θ

ψ
, as given by

(14)

The generalized form of Reissner’s semi-complimentary
energy functional ΦR [9] is stated as

(15)

The cross-sectional strain energy is defined using ΦR as

(16)

The active strains  from kinematical relations and the
reactive strains  from semi-inverted material constitutive
relations must be compatible, implying . The variation
of sectional strain energy is then obtained as

(17)

Substituting Eqs. (6), (10), and (11) into the above equation,
the sectional strain energy becomes

(18)

where the matrices A, E, G, H, and R include the couplings
due to geometry and material distribution of the beam section,
given as 

, 

, 
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The sectional stress resultants are defined as

 (20)

where

(21)

Here, F1 indicates the extensional force, F2 and F3 represent
the transverse shear forces, M1 represents the torsional moment,
and M2 and M3 denote the bending moments.
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unit beam length is stated as

  (22)

Substituting Eqs. (1), (2), (11), and (20) into the above equa-
tion, the variation of external work can be obtained as

(23)

where

,  (24)

2.5 Warping solution and stiffness matrix
The warping displacements and the reactive stresses are

approximated as linear functions of sectional stress resultants,
as given by

(25)

(26)

where  and  respectively indicate the nodal values of
warping and reactive stress coefficients, and  indicates the
beam strain measure coefficients which are constant over the
sectional area. The variables with subscript p represent the
nodal coefficients corresponding to the derivatives of gener-
alized strain measures. The coefficients matrices incorporate
the contributions from extension, shear, bending and torsion
of the beam section. 

Using the approximations of warping and reactive stresses
from Eq. (11), and substituting Eqs. (14), (18), and (23) into
Eq. (13), the equilibrium equations are obtained as

 (27a)

 

(27b)

The warping and reactive stress coefficients are solved using
the above set of equations.

The strain energy variation from Eq. (18) can then be
updated as

(28)

The external work variation can be expressed in terms of
generalized Timoshenko like sectional stiffness matrix as

 (29)

Using the energy principle defined in Eq. (13), the 6×6
Timoshenko like stiffness matrix is determined as

(30)

The above stiffness matrix considers the elastic couplings
effects including transverse shear and Poisson’s deformations,
and can be fully populated for generally anisotropic beams.

2.6 Finite element implementation
The present multifield formulation is implemented into a FE

code called MVSAC with flowchart as shown in Fig. 2. The
discretized beam section, material properties, and composite
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Fig. 2. Flowchart for the present cross-sectional analysis 
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layup are provided as input to the analysis. The semi-inverted
material constitutive relations are first computed, as given in
Eq. (10). The 3D warping deformation and reactive stress
coefficients are then calculated using Eq. (27) which are used
to compute the generalized 6×6 Timoshenko like stiffness
matrix in Eq. (30).

3. RESULTS AND DISCUSSION

The present analysis MVSAC is validated for an elastically
coupled composite box beam with a circumferentially anti-
symmetric layup [6], as shown in Fig. 3. The material prop-
erties are given in Table 1 [6]. The section is discretized with
360 eight-node quadrilateral elements and 1,200 nodes giving
a total of 7,200 degrees of freedom. The commercial software
MSC Patran is used for the FE discretization. The section
exhibits bending-torsion and extension-shear couplings.

3.1 Warping modes
The warping deformation modes computed by the present

analysis are shown in Fig. 4. The extension-shear couplings
results in an out-of-plane deformation in the extension (F1)
mode in addition to the in-plane component and leads to an
in-plane deformation in the shear (F2) mode. Because of the
bending-torsion coupling, the bending (M2) mode indicates
additional out-of-plane deformation which is much dominant
than the in-plane bending deformation. The shear (F3) mode
depicts only out-of-plane displacement and the bending (M2)
mode shows only in-plane displacement without any coupling
contributions. These warping deformations are required for
accurate computation of stiffness constants and the elastic
couplings of the beam cross-section.

3.2 Stiffness constants
The sectional stiffness constants computed by the present

multifield analysis are compared with those of displacement-
based analysis [10] in Table 2. The present results match well
with those of displacement-based analysis with maximum dif-
ference being 3.75% for the bending stiffness K66. The exten-

Table 1. Material properties for composite box beam

Property Value
E11 (GPa) 141.9631

E22 = E33 (GPa) 9.7906
G12 = G13 (GPa) 6.1363

G23(GPa) 4.7988
ν12 = ν13 = ν23 0.42

Fig. 3. Geometry and material layup of composite box beam 

Fig. 4. Warping modes of composite box beam (exaggerated) 

Table 2. Stiffness constants for composite box beam

Stiffness Ref. [10] Present Difference (%)
K11·106 (N) 6.1270 5.9990 -2.09
K12·105 (N m) 8.1595 8.0840 -0.93
K22·105 (N) 3.9593 3.8939 -1.65
K33·105 (N) 1.7737 1.7191 -3.08
K44·101 (N m2) 5.0099 4.9486 -1.22
K45·101 (N m2) -5.1554 -5.1015 -1.05
K55·102 (N m2) 1.7524 1.7012 -2.92
K66·102 (N m2) 4.1192 3.9649 -3.75
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sion-shear K12 and bending-torsion K45 couplings show the
differences of nearly 1%. Overall, a good correlation is
achieved for all stiffness constants compared to the displace-
ment-based approach [10]. The correct prediction of stiffness
constants including any couplings is necessary for the com-
putation of global 1D behavior of composite beams.

3.3 Elastostatic response
In order to investigate the accuracy of the present analysis,

the 1D elastostatic response is computed for a cantilever beam
of length L as 0.762 m. A vertical shear force F3 of 4.448 N is
applied at the tip end. The 1D elastostatic responses are com-
puted through analytical expressions (see Ref. [10]). 

Table 3 presents the comparison of bending slope and
induced twist at the mid-span of the composite box beam. The
present solution is compared with the experimental data [6],
displacement-based analysis RDSAC [10], and Jung et al. [8].
The present value of the bending slope lies within 2.5% of that
of the experimental value. The induced twist response
obtained from RDSAC shows large difference whereas the
present result is nearly 3.5% compared to the experimental
data. Note that the experimental values (also shown in Fig. 5)
indicate slight discrepancy which may be due to the mea-
surement errors resulting from the imperfect boundary and
loading fixtures. Fig. 5 shows the variation of the bending
slope along the beam length. Overall, the present values are
nearly identical to the experimental data [6] and indicate bet-
ter correlation than those of RDSAC [10] and Jung et al. [8].
The comparison of induced twist along the beam length is pre-
sented in Fig. 6. The present multifield analysis matches well
with the experimental data [6] except near the tip where the
maximum deviation of 5.23% is noticed due to the nonuni-
form warping restraint effect which is neglected in the present
approach. The induced twist computed by the present analysis
performs better than the displacement-based RDSAC [10].
The elastostatic responses from the present multifield analysis
show a good overall performance compared to other approaches
because of soft response achieved through the multifield mod-
eling of the sectional stresses and displacements.

4. CONCLUSIONS

A FE based multifield variational cross-sectional analysis is
developed for nonhomogeneous composite beams considering
reactive sectional stresses as unknowns. The analysis allows
the modeling of beam cross-sections with arbitrary geometric
layout and material distributions. The 3D warping deforma-
tions are illustrated for the successful prediction of elastic cou-
plings for composite beams. The sectional stiffness constants
obtained from the present multifield approach indicate devi-
ations within 4% compared to the displacement-based
approach. The elastostatic response computed using the pres-
ent multifield analysis achieves an excellent correlation with
the experimental data. The proposed cross-sectional analysis
offers an alternative approach to model the composite beams
such as rotor blades while considering the elastic coupling
effects.

Table 3. Response at mid-span under tip shear force

Bending slope (rad) Induced twist (rad)
Experiment [6] 8.155E-3 8.526E-3

MVSAC (present) 8.359E-3 
(2.50)*

8.226E-3 
(-3.52)

RDSAC [10] 8.025E-3 
(-1.59)

7.913E-3 
(-7.19)

Jung et al. [2] 8.054E-3 
(-1.24)

8.384E-3 
(-1.67)

*Percentage difference with respect to Experiment [6]

Fig. 5. Bending slope of composite box beam under tip shear
force

Fig. 6. Induced twist of composite box beam under tip shear
force  
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