ABSTRACT: A volume integral equation method (VIEM) is introduced for the solution of elastostatic problems in an unbounded isotropic elastic solid containing multiple isotropic elliptical fibers of arbitrary orientation subject to uniform stress at infinity. The fibers are assumed to be long parallel elliptical cylinders composed of isotropic elastic material perfectly bonded to the isotropic matrix. The solid is assumed to be under plane strain on the plane normal to the cylinders. A detailed analysis of the stress field at the matrix-fiber interface for square and hexagonal packing of the fibers is carried out for different values of the number, orientation angles and concentration of the elliptical fibers. The accuracy and efficiency of the method are examined through comparison with results obtained from analytical and finite element methods.
초 록: 체적 적분방정식법이라는 새로운 수치해석 방법을 이용하여, 다수의 임의로 경사진 등방성 타원형 장섬 유를 포함하는 등방성 무한고체가 정적 인장하중을 받을 때 무한고체 내부에 발생하는 응력분포 해석을 수행하 였다. 장섬유들과 기지 사이의 경계면은 완전결합이라고 가정하여, 평면 변형률 해석을 수행하였다. 즉, 등방성 기 지에 다수의 임의로 경사진 등방성 타원형 장섬유의 중심이 1) 정사각형 배열 형태 또는 2) 정육각형 배열 형태로 포함되어 있는 경우에, 다양한 타원형 장섬유의 체적비와 다양한 경사각에 대하여, 중앙에 위치한 등방성 타원형 장섬유와 등방성 기지의 경계면에서의 인장응력 분포의 변화를 구체적으로 조사하였다. 또한, 체적 적분방정식법 을 이용한 해를 해석하고, 유한요소법을 이용한 해와 비교해 봄으로서, 체적 적분방정식법을 이용하여 구한 해의 정확도를 검증하였다.
Keywords: isotropic elliptical fibers, arbitrary orientation, volume integral equation method
Keywords: 등방성 타원형 장섬유, 임의의 경사각, 체적 적분방정식 법