Original Article
  • Impact Performance of 3D Orthogonal Composites by Automated Tape Placement Placement
  • 자동적층 공정에 의한 3차원 직교 섬유배열구조 복합재의 충격특성
  • 송승욱(부경대학교 고분자공학과), 이창훈(한국기계연구원 복합재료그룹), 변준형(한국기계연구원 복합재료그룹), 엄문광(한국기계연구원 복합재료그룹), 황병선(한국기계연구원 복합재료그룹)
Abstract
3차원 복합재료의 뛰어난 특성을 확인하기 위하여 저속충격 시험을 하였다. 복합재료의 3차원 구조는 자동적층 공정 (ATP, Automated Tape Placement)과 스티칭 (stitching) 방법으로 제조하였다. 이 방법은 일정한 폭을 가지는 탄소섬유/에폭시 프리프레그 테이프를 균일한 간격을 두고 층 별로 서로 직교 적층한 후 비어 있는 공간 사이를 케블라 섬유로 스티칭하는 성형법이다. 새로운 3차원 복합재료와 기존의 프리프레그 시트(sheet)를 사용한 2차원 복합재료와의 충격특성을 비교하기 위하여 저속충격 시험을 하였으며, C-scan에 의한 충격손상 면적 확인 및 충격 후 압축시험을 하였다. 3D 복합재는 스티칭을 하기 위한 간격으로 인하여 복합재료의 전체 섬유 체적율이 낮아졌기 때문에 충격 전 압축 강도는 2D 복합재에 비해 낮았으나 충격 후 파손면적은 약 30-40%의 감소를 보였으며, 충격 전 압축 강도에 대한 충격 후 압축강도 비율은 약 5-10%의 증가를 보였다. 스티칭에 의해 충격 후 압축강도는 전반적으로 향상되었으나, 30J의 충격 에너지부터는 그 효과가 감소하였으며 35J 이상의 충격에서는 스티칭 효과가 없었다.

3차원 복합재료의 뛰어난 특성을 확인하기 위하여 저속충격 시험을 하였다. 복합재료의 3차원 구조는 자동적층 공정 (ATP, Automated Tape Placement)과 스티칭 (stitching) 방법으로 제조하였다. 이 방법은 일정한 폭을 가지는 탄소섬유/에폭시 프리프레그 테이프를 균일한 간격을 두고 층 별로 서로 직교 적층한 후 비어 있는 공간 사이를 케블라 섬유로 스티칭하는 성형법이다. 새로운 3차원 복합재료와 기존의 프리프레그 시트(sheet)를 사용한 2차원 복합재료와의 충격특성을 비교하기 위하여 저속충격 시험을 하였으며, C-scan에 의한 충격손상 면적 확인 및 충격 후 압축시험을 하였다. 3D 복합재는 스티칭을 하기 위한 간격으로 인하여 복합재료의 전체 섬유 체적율이 낮아졌기 때문에 충격 전 압축 강도는 2D 복합재에 비해 낮았으나 충격 후 파손면적은 약 30-40%의 감소를 보였으며, 충격 전 압축 강도에 대한 충격 후 압축강도 비율은 약 5-10%의 증가를 보였다. 스티칭에 의해 충격 후 압축강도는 전반적으로 향상되었으나, 30J의 충격 에너지부터는 그 효과가 감소하였으며 35J 이상의 충격에서는 스티칭 효과가 없었다.

Keywords: automated tape placement, 3D composites, stitching, impact test, C-Scan

Keywords: 자동적층 , 3차원 복합재료, 스티칭, 충격시험

This Article

  • 2005; 18(3): 38-46

    Published on Jun 30, 2005