레이저 융착된 광섬유의 절단 부위에 대한 보호를 위한 관심이 크게 높아지고 있다. 일반적으로 절단된 광섬유의 융착부분은 다른 부위에 비해 상대적으로 매우 취약하며 이러한 이유로 광섬유를 광 통신망에 사용할 때 동일 부분에서의 손실이 추가적으로 일어날 수 있다. 일반적으로 광섬유 융착 부위는 일반 광섬유의 파괴 강도에 비해 약 1/10인 0.4~1 kg로 감소된다. 이러한 이유로 인해 광 융착 부위의 보강이 절실히 요구되고 있다. 그러나, 이러한 구조물의 대부분이 철심 형태의 구조물을 삽입한 슬리브로 보강됨에 따라 굽힘에 대해 효과적으로 대응하지 못할 뿐 아니라 일단 구조물이 굽혀졌을 경우에는 지속적인 광 손실을 발생시키는 요인이 된다. 이러한 문제점을 보완하기 위하여 복합재료로 제작된 코일형 스프링 구조물 형태의 슬리브가 제안되었다. 이러한 슬리브는 기존의 슬리브의 취약점이었던 직하중에 대해 서로 효과적으로 반응할 뿐 아니라 굽힘 및 인장/압축 하중에도 효과가 있음을 알 수 있었다.
레이저 융착된 광섬유의 절단 부위에 대한 보호를 위한 관심이 크게 높아지고 있다. 일반적으로 절단된 광섬유의 융착부분은 다른 부위에 비해 상대적으로 매우 취약하며 이러한 이유로 광섬유를 광 통신망에 사용할 때 동일 부분에서의 손실이 추가적으로 일어날 수 있다. 일반적으로 광섬유 융착 부위는 일반 광섬유의 파괴 강도에 비해 약 1/10인 0.4~1 kg로 감소된다. 이러한 이유로 인해 광 융착 부위의 보강이 절실히 요구되고 있다. 그러나, 이러한 구조물의 대부분이 철심 형태의 구조물을 삽입한 슬리브로 보강됨에 따라 굽힘에 대해 효과적으로 대응하지 못할 뿐 아니라 일단 구조물이 굽혀졌을 경우에는 지속적인 광 손실을 발생시키는 요인이 된다. 이러한 문제점을 보완하기 위하여 복합재료로 제작된 코일형 스프링 구조물 형태의 슬리브가 제안되었다. 이러한 슬리브는 기존의 슬리브의 취약점이었던 직하중에 대해 서로 효과적으로 반응할 뿐 아니라 굽힘 및 인장/압축 하중에도 효과가 있음을 알 수 있었다.
Keywords: Optical fiber, Fusion-splicing, Reinforcement, Helical composite spring sleeve, Refractive index
Keywords: 광섬유, 융해중접, 보강, 나선 형 복합재료 스프링 슬리브, 굴절 지수