A Study on the Prediction of the Loaded Location of the Composite Laminated Shell by Using Neural Networks
C.M. Myung, Y.S. Lee, C.H. Ryu
신경회로망을 이용한 복합재료 원통쉘의 하중특성 추론에 관한 연구
명창문(국방과학연구소), 이영신(충남대학교 기계설계학과 교수, 교신저자(E-mail:yslee@shell.chungnam.ac.kr)), 류충현(충남대학교 기계설계공학과)
Abstract
본 연구에서는 복합재료 원통쉘의 구조해석을 통하여 구해진 원통쉘 경사면의 10등분 등간격 9지점의 변형율을 신경회로망의 입력패턴으로 활용하여 원통쉘에 가해진 충격하중 특성을 동시에 추론하였다. 적용된 신경회로망은 Momentum Backpropagation 알고리즘이며, 모멘텀 계수 및 학습율이 학습도에 따라 가변적으로 조정될 수 있도록 프로그램을 개발 적용하였다. Backpropagation 신경회로망의 은닉층은 1층에서 3층까지 별도 프로그램을 개발하여 충격하중 특성추론 학습을 시도하였다. 개발된 신경회로망 프로그램을 적용하여 원통쉘의 충격하중 특성추론 정확도는 1%이내로 학습에 성공하였다. 본 연구 결과 신경회로망을 이용한 복합재료 원통쉘의 충격하중 특성을 추론할 수 있는 역문제 해석이 가능해 졌다.
본 연구에서는 복합재료 원통쉘의 구조해석을 통하여 구해진 원통쉘 경사면의 10등분 등간격 9지점의 변형율을 신경회로망의 입력패턴으로 활용하여 원통쉘에 가해진 충격하중 특성을 동시에 추론하였다. 적용된 신경회로망은 Momentum Backpropagation 알고리즘이며, 모멘텀 계수 및 학습율이 학습도에 따라 가변적으로 조정될 수 있도록 프로그램을 개발 적용하였다. Backpropagation 신경회로망의 은닉층은 1층에서 3층까지 별도 프로그램을 개발하여 충격하중 특성추론 학습을 시도하였다. 개발된 신경회로망 프로그램을 적용하여 원통쉘의 충격하중 특성추론 정확도는 1%이내로 학습에 성공하였다. 본 연구 결과 신경회로망을 이용한 복합재료 원통쉘의 충격하중 특성을 추론할 수 있는 역문제 해석이 가능해 졌다.