Original Article
  • A Study on the Prediction of the Loaded Location of the Composite Laminated Shell by Using Neural Networks
  • C.M. Myung, Y.S. Lee, C.H. Ryu
  • 신경회로망을 이용한 복합재료 원통쉘의 하중특성 추론에 관한 연구
  • 명창문(국방과학연구소), 이영신(충남대학교 기계설계학과 교수, 교신저자(E-mail:yslee@shell.chungnam.ac.kr)), 류충현(충남대학교 기계설계공학과)
Abstract
본 연구에서는 복합재료 원통쉘의 구조해석을 통하여 구해진 원통쉘 경사면의 10등분 등간격 9지점의 변형율을 신경회로망의 입력패턴으로 활용하여 원통쉘에 가해진 충격하중 특성을 동시에 추론하였다. 적용된 신경회로망은 Momentum Backpropagation 알고리즘이며, 모멘텀 계수 및 학습율이 학습도에 따라 가변적으로 조정될 수 있도록 프로그램을 개발 적용하였다. Backpropagation 신경회로망의 은닉층은 1층에서 3층까지 별도 프로그램을 개발하여 충격하중 특성추론 학습을 시도하였다. 개발된 신경회로망 프로그램을 적용하여 원통쉘의 충격하중 특성추론 정확도는 1%이내로 학습에 성공하였다. 본 연구 결과 신경회로망을 이용한 복합재료 원통쉘의 충격하중 특성을 추론할 수 있는 역문제 해석이 가능해 졌다.

본 연구에서는 복합재료 원통쉘의 구조해석을 통하여 구해진 원통쉘 경사면의 10등분 등간격 9지점의 변형율을 신경회로망의 입력패턴으로 활용하여 원통쉘에 가해진 충격하중 특성을 동시에 추론하였다. 적용된 신경회로망은 Momentum Backpropagation 알고리즘이며, 모멘텀 계수 및 학습율이 학습도에 따라 가변적으로 조정될 수 있도록 프로그램을 개발 적용하였다. Backpropagation 신경회로망의 은닉층은 1층에서 3층까지 별도 프로그램을 개발하여 충격하중 특성추론 학습을 시도하였다. 개발된 신경회로망 프로그램을 적용하여 원통쉘의 충격하중 특성추론 정확도는 1%이내로 학습에 성공하였다. 본 연구 결과 신경회로망을 이용한 복합재료 원통쉘의 충격하중 특성을 추론할 수 있는 역문제 해석이 가능해 졌다.

This Article

  • 2001; 14(5): 26-37

    Published on Oct 31, 2001