Original Article
  • Recent Advances in AI-Based Crack Detection and Image Processing for Cementitious Composites
  • Seungho Song*, Sanghwan Cho*, Min Ook Kim*†

  • * Department of Civil Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea

  • AI 기반 시멘트 복합체의 균열 검출 및 이미지 프로세싱 최신 기술 동향
  • 송승호* · 조상환* · 김민욱*†

  • This article is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.


References
  • 1. Aggelis, D. G., Kordatos, E. Z., Strantza, M., Soulioti, D. V., and Matikas, T. E. (2011). “NDT approach for characterization of subsurface cracks in concrete,” Construction and Building Materials, 25(7), 3089-3097.
  •  
  • 2. Liu, Z., Gu, X., Wu, W., Zou, X., Dong, Q., and Wang, L. (2022). “GPR-based detection of internal cracks in asphalt pavement: A combination method of DeepAugment data and object detection,” Measurement, 197, 111281.
  •  
  • 3. Su, G., Qin, Y., Xu, H., and Liang, J. (2024). “Automatic real-time crack detection using lightweight deep learning models,” Engineering Applications of Artificial Intelligence, 138, 109340.
  •  
  • 4. Golewski, G. L. (2023). “The phenomenon of cracking in cement concretes and reinforced concrete structures: the mechanism of cracks formation, causes of their initiation, types and places of occurrence, and methods of detection—a review,” Buildings, 13(3), 765.
  •  
  • 5. Mohan, A., and Poobal, S. (2018). “Crack detection using image processing: A critical review and analysis,” Alexandria Engineering Journal, 57(2), 787-798.
  •  
  • 6. Yao, Y., Tung, S. T. E., and Glisic, B. (2014). “Crack detection and characterization techniques—An overview,” Structural Control and Health Monitoring, 21(12), 1387-1413.
  •  
  • 7. Liao, K. Y., Chang, P. K., Peng, Y. N., and Yang, C. C. (2004). “A study on characteristics of interfacial transition zone in concrete,” Cement and Concrete Research, 34(6), 977-989.
  •  
  • 8. Ghalyan, N. F., Ghalyan, I. F., and Ray, A. (2019). “Modeling of microscope images for early detection of fatigue cracks in structural materials,” The International Journal of Advanced Manufacturing Technology, 104(9), 3899-3913.
  •  
  • 9. Zhao, L., Pan, Y., Wang, S., Zhang, L., and Islam, M. S. (2021). “A hybrid crack detection approach for scanning electron microscope image using deep learning method,” Scanning, 2021(1), 5558668.
  •  
  • 10. Lall, P., Deshpande, S., Wei, J., and Suhling, J. (2014, May). “Non-destructive crack and defect detection in SAC solder interconnects using cross-sectioning and X-ray micro-CT,” In 2014 IEEE 64th Electronic Components and Technology Conference (ECTC) (pp. 1449-1456). “IEEE.
  •  
  • 11. Azouz, Z., Honarvar Shakibaei Asli, B., and Khan, M. (2023). “Evolution of crack analysis in structures using image processing technique: A review,” Electronics, 12(18), 3862.
  •  
  • 12. Kim, J. K., and Lee, C. S. (1998). “Prediction of differential drying shrinkage in concrete,” Cement and Concrete Research, 28(7), 985-994.
  •  
  • 13. Benboudjema, F., Meftah, F., and Torrenti, J. M. (2005). “Interaction between drying, shrinkage, creep and cracking phenomena in concrete,” Engineering Structures, 27(2), 239-250.
  •  
  • 14. Yu, S., Sun, Z., Qian, W., Yu, J., and Yang, J. (2023). “A meshless method for modeling the microscopic drying shrinkage cracking processes of concrete and its applications,” Engineering Fracture Mechanics, 277, 109014.
  •  
  • 15. Acker, P., and Ulm, F. J. (2001). “Creep and shrinkage of concrete: physical origins and practical measurements,” Nuclear Engineering and Design, 203(2-3), 143-158.
  •  
  • 16. Bažant, Z. P. (2001). “Prediction of concrete creep and shrinkage: past, present and future,” Nuclear Engineering and Design, 203(1), 27-38.
  •  
  • 17. Zhang, Y., Liu, X., Xu, Z., Yuan, W., Xu, Y., Yao, Z., ... and Si, R. (2024). “Early-age cracking of fly ash and GGBFS concrete due to shrinkage, creep, and thermal effects: a review,” Materials, 17(10), 2288.
  •  
  • 18. Dorafshan, S., Thomas, R. J., and Maguire, M. (2018). “Comparison of deep convolutional neural networks and edge detectors for image-based crack detection in concrete,” Construction and Building Materials, 186, 1031-1045.
  •  
  • 19. Kim, H., Ahn, E., Cho, S., Shin, M., and Sim, S. H. (2017). “Comparative analysis of image binarization methods for crack identification in concrete structures,” Cement and Concrete Research, 99, 53-61.
  •  
  • 20. Talab, A. M. A., Huang, Z., Xi, F., and HaiMing, L. (2016). “Detection crack in image using Otsu method and multiple filtering in image processing techniques,” Optik, 127(3), 1030-1033.
  •  
  • 21. Tanaka, N., and Uematsu, K. (1998). “A Crack Detection Method in Road Surface Images Using Morphology,” MVA, 98, 17-19.
  •  
  • 22. Chen, C., Seo, H., Jun, C. H., and Zhao, Y. (2022). “Pavement crack detection and classification based on fusion feature of LBP and PCA with SVM,” International Journal of Pavement Engineering, 23(9), 3274-3283.
  •  
  • 23. Yamaguchi, T., and Hashimoto, S. (2008, December). “Improved percolation-based method for crack detection in concrete surface images. In 2008 19th International Conference on Pattern Recognition (pp. 1-4). “IEEE.
  •  
  • 24. Kim, H., Lee, J., Ahn, E., Cho, S., Shin, M., and Sim, S. H. (2017). “Concrete crack identification using a UAV incorporating hybrid image processing,” Sensors, 17(9), 2052.
  •  
  • 25. Golding, V. P., Gharineiat, Z., Munawar, H. S., and Ullah, F. (2022). “Crack detection in concrete structures using deep learning,” Sustainability, 14(13), 8117.
  •  
  • 26. Zhang, A., Li, Q., Wang, K. C., and Qiu, S. (2013). “Matched filtering algorithm for pavement cracking detection,” Transportation Research Record, 2367(1), 30-42.
  •  
  • 27. Moosavi, R., Grunwald, M., and Redmer, B. (2020). “Crack detection in reinforced concrete,” NDT & E International, 109, 102190.
  •  
  • 28. Das, P., Muni, M. K., Pradhan, N., Basa, B., and Sahu, S. K. (2024). “Fuzzy logic for crack detection in cantilever-laminated composite beam using frequency response,” Journal of the Brazilian Society of Mechanical Sciences and Engineering, 46(4), 250.
  •  
  • 29. Choudhary, G. K., and Dey, S. (2012, October). “Crack detection in concrete surfaces using image processing, fuzzy logic, and neural networks,” In 2012 IEEE Fifth International Conference on Advanced Computational Intelligence (ICACI) (pp. 404-411). IEEE.
  •  
  • 30. Tian, F., Zhao, Y., Che, X., Zhao, Y., and Xin, D. (2019). “Concrete crack identification and image mosaic based on image processing,” Applied Sciences, 9(22), 4826.
  •  
  • 31. Ali, A., Heneash, U., Hussein, A., and Eskebi, M. (2022). “Predicting pavement condition index using fuzzy logic technique,” Infrastructures, 7(7), 91.
  •  
  • 32. Ali, R., Chuah, J. H., Talip, M. S. A., Mokhtar, N., and Shoaib, M. A. (2022). “Structural crack detection using deep convolutional neural networks,” Automation in Construction, 133, 103989.
  •  
  • 33. Matarneh, S., Elghaish, F., Rahimian, F. P., Abdellatef, E., and Abrishami, S. (2024). “Evaluation and optimisation of pre-trained CNN models for asphalt pavement crack detection and classification,” Automation in Construction, 160, 105297.
  •  
  • 34. Seol, D., Kim, H., Park, S., and Lee, J. (2025). “Comparative study of cnn-based deep learning models for concrete crack detection,” Journal of Building Engineering, 113651.
  •  
  • 35. Falaschetti, L., Beccerica, M., Biagetti, G., Crippa, P., Alessandrini, M., and Turchetti, C. (2022). “A lightweight CNN-based vision system for concrete crack detection on a low-power embedded microcontroller platform,” Procedia Computer Science, 207, 3948-3956.
  •  
  • 36. Nguyen, N. H. T., Perry, S., Bone, D., Le, H. T., and Nguyen, T. T. (2021). “Two-stage convolutional neural network for road crack detection and segmentation,” Expert Systems with Applications, 186, 115718.
  •  
  • 37. Laxman, K. C., Tabassum, N., Ai, L., Cole, C., and Ziehl, P. (2023). “Automated crack detection and crack depth prediction for reinforced concrete structures using deep learning,” Construction and Building Materials, 370, 130709.
  •  
  • 38. Ali, L., Alnajjar, F., Jassmi, H A., Gocho, M., Khan, W., and Serhani, M. A. (2021). “Performance evaluation of deep CNN-based crack detection and localization techniques for concrete structures,” Sensors, 21(5), 1688.
  •  
  • 39. Fan, C. L., and Chung, Y. J. (2022). “Design and optimization of CNN architecture to identify the types of damage imagery,” Mathematics, 10(19), 3483.
  •  
  • 40. Jin, X., Haider, M. Z., Cui, Y., Jang, J. G., Kim, Y. J., Fang, G., and Hu, J. W. (2023). “Development of nanomodified self-healing mortar and a U-Net model based on semantic segmentation for crack detection and evaluation,” Construction and Building Materials, 365, 129985.
  •  
  • 41. Rakshitha, R., Srinath, S., Rashmi, S., and Poornima, B. V. (2025). “Integrated pixel-level crack detection and quantification using an ensemble of advanced U-net architectures,” Results in Engineering, 25, 103726.
  •  
  • 42. Cheng, J., Xiong, W., Chen, W., Gu, Y., and Li, Y. (2018, October). “Pixel-level crack detection using U-Net,” In TENCON 2018-2018 IEEE Region 10 Conference (pp. 0462-0466). IEEE.
  •  
  • 43. Lu, W., Qian, M., Xia, Y., Lu, Y., Shen, J., Fu, Q., and Lu, Y. (2024, April). “Crack _ PSTU: Crack detection based on the U-Net framework combined with Swin Transformer,” In Structures (Vol. 62, p. 106241). Elsevier.
  •  
  • 44. Khan, M. A. M., Kee, S. H., and Nahid, A. A. (2023). “Vision-based concrete-crack detection on railway sleepers using dense U-Net model,” Algorithms, 16(12), 568.
  •  
  • 45. Li, R., Yu, J., Li, F., Yang, R., Wang, Y., and Peng, Z. (2023). “Automatic bridge crack detection using Unmanned aerial vehicle and Faster R-CNN,” Construction and Building Materials, 362, 129659.
  •  
  • 46. Gan, L., Liu, H., Yan, Y., and Chen, A. (2024). “Bridge bottom crack detection and modeling based on faster R‐CNN and BIM,” IET Image Processing, 18(3), 664-677.
  •  
  • 47. Fang, F., Li, L., Gu, Y., Zhu, H., and Lim, J. H. (2020). “A novel hybrid approach for crack detection,” Pattern Recognition, 107, 107474.
  •  
  • 48. Gou, C., Peng, B., Li, T., and Gao, Z. (2019, November). “Pavement crack detection based on the improved faster-rcnn,” In 2019 IEEE 14th International Conference on Intelligent Systems and Knowledge Engineering (ISKE) (pp. 962-967). IEEE.
  •  
  • 49. Mao, Y., Chen, J., Ping, P., and Chen, H. (2020, August). “Crack detection with multi-task enhanced faster R-CNN model,” In 2020 IEEE Sixth International Conference on Big Data Computing Service and Applications (BigDataService) (pp. 193-197). IEEE.
  •  
  • 50. Wang, Y. J., Ding, M., Kan, S., Zhang, S., and Lu, C. (2018, December). “Deep proposal and detection networks for road damage detection and classification,” In 2018 IEEE International Conference on Big Data (Big Data) (pp. 5224-5227). IEEE.
  •  
  • 51. Sekar, A., and Perumal, V. (2021). “Automatic road crack detection and classification using multi-tasking faster RCNN,” Journal of Intelligent and Fuzzy Systems, 41(6), 6615-6628.
  •  
  • 52. Tang, J., Mao, Y., Wang, J., and Wang, L. (2019, July). “Multi-task enhanced dam crack image detection based on faster R-CNN,” In 2019 IEEE 4th international conference on image, vision and computing (ICIVC) (pp. 336-340). IEEE.
  •  
  • 53. Tran, V. P., Tran, T. S., Lee, H. J., Kim, K. D., Baek, J., and Nguyen, T. T. (2021). “One stage detector (RetinaNet)-based crack detection for asphalt pavements considering pavement distresses and surface objects,” Journal of Civil Structural Health Monitoring, 11(1), 205-222.
  •  
  • 54. Yan, B. (2025, July). “Deep Learning-Based Automated Defect Detection in Images,” In 2025 3rd International Conference on Data Science and Network Security (ICDSNS) (pp. 1-5). IEEE.
  •  
  • 55. Ale, L., Zhang, N., and Li, L. (2018, December). “Road damage detection using RetinaNet,” In 2018 IEEE International Conference on Big Data (Big Data) (pp. 5197-5200). IEEE.
  •  
  • 56. Su, P., Han, H., Liu, M., Yang, T., and Liu, S. (2024). “MOD-YOLO: Rethinking the YOLO architecture at the level of feature information and applying it to crack detection,” Expert Systems with Applications, 237, 121346.
  •  
  • 57. Hu, G. X., Hu, B. L., Yang, Z., Huang, L., and Li, P. (2021). “Pavement crack detection method based on deep learning models,” Wireless Communications and Mobile Computing, 2021(1), 5573590.
  •  
  • 58. Pandey, V., and Mishra, S. S. (2025). “A review of image-based deep learning methods for crack detection,” Multimedia Tools and Applications, 1-43.
  •  
  • 59. Qiu, Q., and Lau, D. (2023). “Real-time detection of cracks in tiled sidewalks using YOLO-based method applied to unmanned aerial vehicle (UAV) images,” Automation in Construction, 147, 104745.
  •  
  • 60. Tran, T. S., Nguyen, S. D., Lee, H. J., and Tran, V. P. (2023). “Advanced crack detection and segmentation on bridge decks using deep learning,” Construction and Building Materials, 400, 132839.
  •  
  • 61. Tian, L., Wang, Z., Liu, W., Cheng, Y., Alsaadi, F. E., and Liu, X. (2021). “A new GAN-based approach to data augmentation and image segmentation for crack detection in thermal imaging tests,” Cognitive Computation, 13(5), 1263-1273.
  •  
  • 62. Zhang, H., Chen, N., Li, M., and Mao, S. (2024). “The crack diffusion model: an innovative diffusion-based method for pavement crack detection,” Remote Sensing, 16(6), 986.
  •  
  • 63. Yang, Q., Shi, W., Chen, J., and Lin, W. (2020). “Deep convolution neural network-based transfer learning method for civil infrastructure crack detection,” Automation in Construction, 116, 103199.
  •  
  • 64. Choi, J. Y., and Han, J. M. (2024). “Deep learning (Fast R-CNN)-based evaluation of rail surface defects,” Applied Sciences, 14(5), 1874.
  •  
  • 65. Fan, Y., Hu, Z., Li, Q., Sun, Y., Chen, J., and Zhou, Q. (2024). “CrackNet: a hybrid model for crack segmentation with dynamic loss function,” Sensors, 24(22), 7134.
  •  
  • 66. Liu, Z., Cao, Y., Wang, Y., and Wang, W. (2019). “Computer vision-based concrete crack detection using U-net fully convolutional networks,” Automation in Construction, 104, 129-139.
  •  
  • 67. Wang, X., Wang, Y., Yu, L., and Li, Q. (2023). “Automated pavement crack detection based on multiscale fully convolutional network,” The Journal of Engineering, 2023(10), e12317.
  •  
  • 68. Song, W.; Jia, G.; Jia, D.; Zhu, H. (2019). Automatic Pavement Crack Detection and Classification Using Multiscale Feature Attention Network,” IEEE Access 7, 171001–171012.
  •  
  • 69. Qiao, W., Liu, Q., Wu, X., Ma, B., and Li, G. (2021). “Automatic pixel-level pavement crack recognition using a deep feature aggregation segmentation network with a scSE attention mechanism module,” Sensors, 21(9), 2902.
  •  
  • 70. Lau, S. L., Chong, E. K., Yang, X., and Wang, X. (2020). Automated Pavement Crack Segmentation Using U-Net-Based Convolutional Neural Network,” IEEE Access, 8, 114892–114899.
  •  
  • 71. Zhang, Y., Xiao, G., Zhou, K., Zhu, B., Gao, H., and Huang, Y. (2023). “Two-Phase fatigue life prediction method based on scSE U-net algorithm for abrasive belt grinding of titanium alloy,” Journal of Materials Processing Technology, 319, 118075.
  •  
  • 72. Shang, J., Xu, J., Zhang, A. A., Liu, Y., Wang, K. C., Ren, D., ... and He, A. (2023). “Automatic Pixel-level pavement sealed crack detection using Multi-fusion U-Net network,” Measurement, 208, 112475.
  •  
  • 73. Xu, H., Su, X., Wang, Y., Cai, H., Cui, K., and Chen, X. (2019). “Automatic bridge crack detection using a convolutional neural network,” Applied Sciences, 9(14), 2867.
  •  
  • 74. Deng, W., Mou, Y., Kashiwa, T., Escalera, S., Nagai, K., Nakayama, K., ... and Prendinger, H. (2020). “Vision based pixel-level bridge structural damage detection using a link ASPP network,” Automation in Construction, 110, 102973.
  •  
  • 75. Li, H., Xu, H., Tian, X., Wang, Y., Cai, H., Cui, K., Chen, X. (2020). Bridge Crack Detection Based on SSENets,” Appl. Sci,” , 10, 4230.
  •  
  • 76. Tong, Z., Gao, J., Han, Z., and Wang, Z. (2018). “Recognition of asphalt pavement crack length using deep convolutional neural networks,” Road Materials and Pavement Design, 19(6), 1334-1349.
  •  
  • 77. Nguyen, T. N., Tran, V. T., Woo, S. W., and Park, S. S. (2022, August). “Image segmentation of concrete cracks using SegNet,” In International Conference on Intelligence of Things (pp. 348-355). Cham: Springer International Publishing.
  •  
  • 78. Tran, T. V., Nguyen-Xuan, H., and Zhuang, X. (2024). “Investigation of crack segmentation and fast evaluation of crack propagation, based on deep learning,” Frontiers of Structural and Civil Engineering, 18(4), 516-535.
  •  
  • 79. Chen, K., Yadav, A., Khan, A., Meng, Y., and Zhu, K. (2019). “Improved crack detection and recognition based on convolutional neural network,” Modelling and Simulation in Engineering, 2019(1), 8796743.
  •  
  • 80. Moukhliss, A., Ayoub, N., Rahmouni, A., and Benamar, R. (2025). “Advanced crack detection in bidirectional gradient material FGM beams: a neural network approach with adam optimization,” Iranian Journal of Science and Technology, Transactions of Mechanical Engineering, 49(2), 963-988.
  •  
  • 81. Gong, C., Djouda, J. M., Hmima, A., Gaslain, F., Chemkhi, M., Maurer, T., and Panicaud, B. (2021). “2D characterization at submicron scale of crack propagation of 17-4PH parts produced by Atomic Diffusion Additive Manufacturing (ADAM) process,” Procedia Structural Integrity, 34, 13-19.
  •  
  • 82. Prasetyo, A., Purnama, I. K. E., Yuniarno, E. M., Tambusay, A., Suprobo, P., and Purnomo, M. H. (2024, July). “Optimizer influence on U-Net architecture for crack segmentation,” In 2024 International Seminar on Intelligent Technology and Its Applications (ISITIA) (pp. 704-709). IEEE.
  •  
  • 83. Zhou, Y., Ali, R., Mokhtar, N., Harun, S. W., and Iwahashi, M. (2024). “MixSegNet: a novel crack segmentation network combining CNN and Transformer,” IEEE Access.
  •  
  • 84. Augustauskas, R., and Lipnickas, A. (2020). “Improved pixel-level pavement-defect segmentation using a deep autoencoder,” Sensors, 20(9), 2557.
  •  
  • 85. Moraes, A. M., Pugliese, L. F., Santos, R. F. D., Vitor, G. B., Braga, R. A. D. S., and Silva, F. R. D. (2025). “Effectiveness of YOLO Architectures in Tree Detection: Impact of Hyperparameter Tuning and SGD, Adam, and AdamW Optimizers,” Standards, 5(1), 9.
  •  
  • 86. Yao, Y., Tung, S. T. E., and Glisic, B. (2014). “Crack detection and characterization techniques—An overview,” Structural Control and Health Monitoring, 21(12), 1387-1413.
  •  
  • 87. Chow, J. K., Su, Z., Wu, J., Li, Z., Tan, P. S., Liu, K. F., ... and Wang, Y. H. (2020). “Artificial intelligence-empowered pipeline for image-based inspection of concrete structures,” Automation in Construction, 120, 103372.
  •  
  • 88. Zadeh, S. S., Khorshidi, M., and Kooban, F. (2024). “Concrete surface crack detection with convolutional-based deep learning models,” arXiv preprint arXiv:2401.07124.
  •  
  • 89. Drouyer, S. (2020). “An'All Terrain'Crack Detector Obtained by Deep Learning on Available Databases,” Image Processing On Line, 10, 105-123.
  •  
  • 90. Henderson, P., and Ferrari, V. (2016, November). End-to-end training of object class detectors for mean average precision. In Asian conference on computer vision (pp. 198-213). Cham: Springer International Publishing.
  •  
  • 91. Liu, F., Liu, J., and Wang, L. (2022). “Asphalt pavement crack detection based on convolutional neural network and infrared thermography,” IEEE Transactions on Intelligent Transportation Systems, 23(11), 22145-22155.
  •  
  • 92. Xiong, C., Zayed, T., and Abdelkader, E. M. (2024). “A novel YOLOv8-GAM-Wise-IoU model for automated detection of bridge surface cracks,” Construction and Building Materials, 414, 135025.
  •  
  • 93. Joshi, D., Singh, T. P., and Sharma, G. (2022). “Automatic surface crack detection using segmentation-based deep-learning approach,” Engineering Fracture Mechanics, 268, 108467.
  •  
  • 94. Zhang, J., Lu, C., Wang, J., Wang, L., and Yue, X. G. (2019). “Concrete cracks detection based on FCN with dilated convolution,” Applied Sciences, 9(13), 2686.
  •  
  • 95. Li, S., Zhao, X., and Zhou, G. (2019). “Automatic pixel‐level multiple damage detection of concrete structure using fully convolutional network,” Computer‐Aided Civil and Infrastructure Engineering, 34(7), 616-634.
  •  
  • 96. Ryue, J., and White, P. R. (2007). “The detection of cracks in beams using chaotic excitations,” Journal of sound and vibration, 307(3-5), 627-638.
  •  
  • 97. Hsieh, Y. A., and Tsai, Y. J. (2020). “Machine learning for crack detection: Review and model performance comparison,” Journal of Computing in Civil Engineering, 34(5), 04020038.
  •  
  • 98. Maslan, J., and Cicmanec, L. (2023). “A system for the automatic detection and evaluation of the runway surface cracks obtained by unmanned aerial vehicle imagery using deep convolutional neural networks,” Applied Sciences, 13(10), 6000.
  •  
  • 99. Liu, Y., Zhou, T., Xu, J., Hong, Y., Pu, Q., and Wen, X. (2023). “Rotating target detection method of concrete bridge crack based on YOLO v5,” Applied Sciences, 13(20), 11118.
  •  

This Article

Correspondence to

  • Min Ook Kim
  • Department of Civil Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea

  • E-mail: minookkim@seoultech.ac.kr