Original Article
  • Hemp-Derived Carbon Materials for High-Performance Supercapacitors and Batteries
  • Donghyuk Choi*, Siwan Nam*, Jinhoon Kim*, Hyunmin Jeong*, Hui Yun Hwang**†

  • * Department of Mechanical Design Engineering Gyeongkuk National Univeristy
    ** School of Electronics and Mechanical Engineering, Gyeongkuk National Univeristy

  • 고성능 슈퍼커패시터 및 배터리용 대마 유래 탄소 소재
  • 최동혁* · 남시완* · 김진훈* · 정현민* · 황희윤**†

  • This article is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.


References
  • 1. Simon, P., and Gogotsi, Y., “Materials for Electrochemical Capacitors,” Nature Materials, Vol. 7, No. 11, 2008, pp. 845-854.
  •  
  • 2. Larcher, D., and Tarascon, J.M., “Towards Greener and More Sustainable Li-ion Batteries for Electrical Energy Storage,” Nature Chemistry, Vol. 7, No. 1, 2015, pp. 19-29.
  •  
  • 3. Wang, H., Xu, Z., Kohandehghan, A., Li, Z., Cui, K., Tan, X., et al., “Interconnected Carbon Nanosheets Derived from Hemp for Ultrafast Supercapacitors with High Energy,” ACS Nano, Vol. 7, No. 6, 2013, pp. 5131-5141.
  •  
  • 4. Deng, J., Li, M., and Wang, Y., “Biomass-Derived Carbon: Synthesis and Applications in Energy Storage and Conversion,” Green Chemistry, Vol. 18, No. 18, 2016, pp. 4824-4854.
  •  
  • 5. Jiang, J., Zhang, L., Wang, X., Holm, N., Rajagopalan, K., Chen, F., and Ma, S., “Highly Ordered Macroporous Woody Biochar with Ultra-High Carbon Content as Supercapacitor Electrodes,” Electrochimica Acta, Vol. 113, 2013, pp. 481-489.
  •  
  • 6. Crini, G., Lichtfouse, E., Chanet, G., and Morin-Crini, N., “Applications of Hemp in Textiles, Paper Industry, Insulation and Building Materials, Horticulture, Animal Nutrition, Food and Beverages, Nutraceuticals, Cosmetics and Hygiene, Medicine, Agrochemistry, Energy Production and Environment: A Review,” Environmental Chemistry Letters, Vol. 18, No. 5, 2020, pp. 1451-1476.
  •  
  • 7. Amaducci, S., and Gusovius, H.J., “Hemp-Cultivation, Extraction and Processing,” in Industrial Applications of Natural Fibres: Structure, Properties and Technical Applications, Wiley, Chichester, UK, 2010, pp. 109-134.
  •  
  • 8. Yang, H., Ye, S., Zhou, J., and Liang, T., “Biomass-Derived Porous Carbon Materials for Supercapacitors,” Frontiers in Chemistry, Vol. 7, 2019, p. 274.
  •  
  • 9. Bai, Y.L., Zhang, C.C., Rong, F., Guo, Z.X., and Wang, K.X., “Biomass-Derived Carbon Materials for Electrochemical Energy Storage,” Chemistry – A European Journal, Vol. 30, No. 23, 2024, e202304157.
  •  
  • 10. Shahzad, A., “Hemp Fiber and Its Composites – A Review,” Journal of Composite Materials, Vol. 46, No. 8, 2012, pp. 973-986.
  •  
  • 11. Li, Z., Wang, X., and Wang, L., “Properties of Hemp Fibre Reinforced Concrete Composites,” Composites Part A: Applied Science and Manufacturing, Vol. 37, No. 3, 2006, pp. 497-505.
  •  
  • 12. Xu, P., Li, B., Yu, J., Liu, L., Xu, J., Wang, Z., and Fan, Y., “Enhancing the Adsorption of Methylene Blue onto Hemp Hurd Powder by Tailoring Its Surface Properties,” Science of Advanced Materials, Vol. 11, No. 5, 2019, pp. 661-671.
  •  
  • 13. Kabir, M.M., Wang, H., Lau, K.T., and Cardona, F., “Chemical Treatments on Plant-Based Natural Fibre Reinforced Polymer Composites: An Overview,” Composites Part B: Engineering, Vol. 43, No. 7, 2012, pp. 2883-2892.
  •  
  • 14. Placet, V., Cisse, O., and Boubakar, M.L., “Nonlinear Tensile Behaviour of Elementary Hemp Fibres. Part I: Investigation of the Relationship Between Microstructural Features and Tensile Properties,” Composites Part A: Applied Science and Manufacturing, Vol. 56, 2014, pp. 319-327.
  •  
  • 15. Thygesen, A., Thomsen, A.B., Daniel, G., and Lilholt, H., “Comparison of Composites Made from Fungal Defibrated Hemp with Composites of Traditional Hemp Yarn,” Industrial Crops and Products, Vol. 25, No. 2, 2007, pp. 147-159.
  •  
  • 16. Amaducci, S., Colauzzi, M., Bellocchi, G., and Venturi, G., “Modelling Post-Emergent Hemp Phenology (Cannabis sativa L.): Theory and Evaluation,” European Journal of Agronomy, Vol. 28, No. 1, 2008, pp. 90-102.
  •  
  • 17. Mwaikambo, L.Y., and Ansell, M.P., “Chemical Modification of Hemp, Sisal, Jute, and Kapok Fibers by Alkalization,” Journal of Applied Polymer Science, Vol. 84, No. 12, 2002, pp. 2222-2234.
  •  
  • 18. Pejic, B., Kostic, M., Skundric, P., and Praskalo, J., “The Effects of Hemicelluloses and Lignin Removal on Water Uptake Behavior of Hemp Fibers,” Bioresource Technology, Vol. 99, No. 15, 2008, pp. 7152-7159.
  •  
  • 19. Elmouwahidi, A., Bailón-García, E., Romero-Cano, L.A., Zárate-Guzmán, A.I., Pérez-Cadenas, A.F., and Carrasco-Marín, F., “Influence of Surface Chemistry on the Electrochemical Performance of Biomass-Derived Carbon Electrodes for Its Use as Supercapacitors,” Materials, Vol. 12, No. 15, 2019, p. 2458.
  •  
  • 20. Islam, M.S., Pickering, K.L., and Foreman, N.J., “Influence of Alkali Treatment on the Interfacial and Physico-Mechanical Properties of Industrial Hemp Fibre Reinforced Polylactic Acid Composites,” Composites Part A: Applied Science and Manufacturing, Vol. 41, No. 5, 2010, pp. 596-603.
  •  
  • 21. Titirici, M.M., Antonietti, M., and Baccile, N., “Hydrothermal Carbon from Biomass: A Comparison of the Local Structure from Poly- to Monosaccharides and Pentoses/Hexoses,” Green Chemistry, Vol. 10, No. 11, 2008, pp. 1204-1212.
  •  
  • 22. Liu, T., Finn, L., Yu, M., Wang, H., Zhai, T., Lu, X., et al., “Polyaniline and Polypyrrole Pseudocapacitor Electrodes with Excellent Cycling Stability,” Nano Letters, Vol. 14, No. 5, 2014, pp. 2522-2527.
  •  
  • 23. Chen, L.F., Zhang, X.D., Liang, H.W., Kong, M., Guan, Q.F., Chen, P., et al., “Synthesis of Nitrogen-Doped Porous Carbon Nanofibers as an Efficient Electrode Material for Supercapacitors,” ACS Nano, Vol. 6, No. 8, 2012, pp. 7092-7102.
  •  
  • 24. Jagtoyen, M., and Derbyshire, F., “Activated Carbons from Yellow Poplar and White Oak by H3PO4 Activation,” Carbon, Vol. 36, No. 7-8, 1998, pp. 1085-1097.
  •  
  • 25. Candelaria, S.L., Shao, Y., Zhou, W., Li, X., Xiao, J., Zhang, J.G., et al., “Nanostructured Carbon for Energy Storage and Conversion,” Nano Energy, Vol. 1, No. 2, 2012, pp. 195-220.
  •  
  • 26. Manaia, J.P., Manaia, A.T., and Rodriges, L., “Industrial Hemp Fibers: An Overview,” Fibers, Vol. 7, No. 12, 2019, p. 106.
  •  
  • 27. Nurazzi, N.M., Asyraf, M.R.M., Rayung, M., Norrrahim, M.N.F., Shazleen, S.S., Rani, M.S.A., Shafi, A.R., Aisyah, H.A., Radzi, M.H.M., Sabaruddin, F.A., Ilyas, R.A., Zainudin, E.S., and Abdan, K., “Thermogravimetric Analysis Properties of Cellulosic Natural Fiber Polymer Composites: A Review on Influence of Chemical Treatments,” Polymers, Vol. 13, No. 16, 2021, p. 2710.
  •  
  • 28. Li, H., Qu, Y., and Xu, J., “Microwave-Assisted Conversion of Lignin,” in Production of Biofuels and Chemicals with Microwave, Biofuels and Biorefineries Vol. 3, Springer, Dordrecht, Netherlands, 2015.
  •  
  • 29. Mijas, G., Manich, A., Lis, M.J., Riba-Moliner, M., Algaba, I., and Cayuela, D., “Analysis of Lignin Content in Alkaline Treated Hemp Fibers: Thermogravimetric Studies and Determination of Kinetics of Different Decomposition Steps,” Journal of Wood Chemistry and Technology, Vol. 41, No. 5, 2021, pp. 210–219.
  •  
  • 30. Li, Y., Lu, Y., Meng, Q., Jensen, A.C.S., Zhang, Q., Zhang, Q., Tong, Y., Qi, Y., Gu, L., Titirici, M.M., and Hu, Y.S., “Regulating Pore Structure of Hierarchical Porous Waste Cork-Derived Hard Carbon Anode for Enhanced Na Storage Performance,” Advanced Energy Materials, Vol. 9, 2019, 1902852.
  •  
  • 31. Sert, S., Gültekin, S.S., Kaya, D.D., and Korlu, A., “Development of Activated Carbon from Hemp Hurd for EMI Shielding and Supercapacitors via One-Step Microwave Pyrolysis Without Inert Gas,” Biomass Conversion and Biorefinery, Vol. 15, 2025, pp. 16087–16106.
  •  
  • 32. Wang, Q., Yan, J., Wang, Y., Wei, T., Zhang, M., Jing, X., et al., “A Green and Scalable Route to Yield Porous Carbon Sheets from Biomass for Supercapacitors with High Capacity and Long Cycle Life,” Energy & Environmental Science, Vol. 6, No. 8, 2013, pp. 2497-2504.
  •  
  • 33. Liu, B., Zhang, L., Qi, P., Zhu, M., Yang, G., Xu, Y., et al., “Nitrogen-Doped Interconnected Carbon Nanosheets Derived from Hemp for Ultrafast Supercapacitors with High Volumetric Energy Density,” Journal of Materials Chemistry A, Vol. 5, No. 33, 2017, pp. 17610-17618.
  •  
  • 34. Titirici, M.M., White, R.J., Falco, C., and Sevilla, M., “Black Perspectives for a Green Future: Hydrothermal Carbons for Environment Protection and Energy Storage,” Energy & Environmental Science, Vol. 5, No. 5, 2012, pp. 6796-6822.
  •  
  • 35. Yang, H., and Kano, N., “Preparation and Characterization of Activated Carbon from Hemp (Cannabis sativa) Bast Fiber by Hydrothermal Carbonization and Chemical Activation,” Materials, Vol. 14, No. 4, 2021, p. 948.
  •  
  • 36. Chrysafi, I., Ainali, N.M., Xanthopoulou, E., Zamboulis, A., and Bikiaris, D.N., “Thermal Degradation Mechanism and Decomposition Kinetic Studies of Poly(Ethylene Succinate)/Hemp Fiber Composites,” Journal of Composites Science, Vol. 7, No. 6, 2023, p. 216.
  •  
  • 37. Choudhary, M., Jain, S.K., Singh, D., Srivastava, K., Patel, A.K., Mahlknecht, J., Giri, B.S., and Kumar, M., “Determination of Thermal Degradation Behavior and Kinetics Parameters of Chemically Modified Sun Hemp Biomass,” Bioresource Technology, Vol. 380, 2023, 129065.
  •  
  • 38. Hossain, M.Z., Wu, W., Xu, W.Z., Chowdhury, M.B.I., Jhawar, A.K., Machin, D., and Charpentier, P.A., “High-Surface-Area Mesoporous Activated Carbon from Hemp Bast Fiber Using Hydrothermal Processing,” C, Vol. 4, No. 3, 2018, p. 38.
  •  
  • 39. Wang, J., and Kaskel, S., “KOH Activation of Carbon-Based Materials for Energy Storage,” Journal of Materials Chemistry, Vol. 22, 2012, pp. 23710-23725.
  •  
  • 40. Yan, Y., Sun, W., Wei, Y., Liu, K., Ma, J., and Hu, G., “Review of Biomass-Derived Carbon Nanomaterials—From 0D to 3D—For Supercapacitor Applications,” Nanomaterials, Vol. 15, No. 4, 2025, p. 315.
  •  
  • 41. Sun, W., Lipka, S.M., Swartz, C., et al., “Hemp-Derived Activated Carbons for Supercapacitors,” Carbon, Vol. 103, 2016, pp. 181-192.
  •  
  • 42. Phiri, I., Phiri, J., Pansila, P., et al., “Hemp Hurd-Derived Porous Carbon for High-Performance Supercapacitors,” ACS Omega, Vol. 5, No. 41, 2020, pp. 26350-26360.
  •  
  • 43. Rosas, J.M., Bedia, J., Rodríguez-Mirasol, J., and Cordero, T., “Hemp-Derived Activated Carbon Preparation by Phosphoric Acid Activation,” Fuel, Vol. 88, 2009, pp. 19-26.
  •  
  • 44. Puziy, A.M., Poddubnaya, O.I., Martínez-Alonso, A., and Tascón, J.M.D., “Surface Chemistry of Phosphorus-Containing Carbons of Lignocellulosic Origin,” Carbon, Vol. 43, 2005, pp. 2857-2868.
  •  
  • 45. Wang, Z., Li, T., Song, B., Liu, S., and Li, S., “Thermochemical Conversion of Waste Hemp Textiles into Hierarchical Porous Carbons for CO2 Capture: Kinetic Insights and Structure–Property Relationships,” AIP Advances, Vol. 15, No. 5, 2025, 055107.
  •  
  • 46. Tekin, B., and Topcu, Y., “Novel Hemp Biomass-Derived Activated Carbon as Cathode Material for Aqueous Zinc-Ion Hybrid Supercapacitors: Synthesis, Characterization, and Electrochemical Performance,” Journal of Energy Storage, Vol. 77, 2025, 109879.
  •  
  • 47. Liu, S., Ge, L., Gao, S., Zhuang, L., Zhu, Z., and Wang, H., “Activated Carbon Derived from Bio-Waste Hemp Hurd and Retted Hemp Hurd for CO2 Adsorption,” Composites Communications, Vol. 5, 2017, pp. 27-30.
  •  
  • 48. Farzaneh, A., Richards, T., Sklavounos, E., and van Heiningen, A., “A Kinetic Study of CO2 and Steam Gasification of Char from Lignin Produced in the SEW Process,” BioResources, Vol. 9, No. 2, 2014, pp. 3052-3063.
  •  
  • 49. Lupul, I., Yperman, J., Carleer, R., et al., “Tailoring of Porous Texture of Hemp Stem-Based Activated Carbon Produced by Phosphoric Acid Activation in Steam Atmosphere,” Journal of Porous Materials, Vol. 22, 2015, pp. 283–289.
  •  
  • 50. Klangvijit, K., Bowornthommatadsana, K., Reilly, M.P., Uwanno, T., Yordsri, V., Obata, M., Fujishige, M., Takeuchi, K., and Wongwiriyapan, W., “Optimizing Electrochemical Performance: A Study of Aqueous Electrolytes with Hemp-Derived Activated Carbon for Supercapacitors,” ACS Omega, Vol. 10, No. 7, 2025, pp. 6601-6614.
  •  
  • 51. Xiong, W., Hu, X., Wu, X., Zeng, Y., Wang, B., He, G., and Zhu, Z., “A Flexible Fiber-Shaped Supercapacitor Utilizing Hierarchical NiCo2O4@polypyrrole Core–Shell Nanowires on Hemp-Derived Carbon,” Journal of Materials Chemistry A, Vol. 3, No. 3, 2015, pp. 17209-17216.
  •  
  • 52. Ajaya, K.M., and Dinesh, M.N., “Synthesis and Characterization of Deccan Hemp Plant-Based Electrode Material for Supercapacitor Applications,” AIP Conference Proceedings, Vol. 2244, No. 1, 2020, 020006.
  •  
  • 53. Liu, Z., Chen, K., Fernando, A., Gao, Y., Li, G., Jin, L., Zhai, H., Yi, Y., Xu, L., Zheng, Y., Li, H., Fan, Y., Li, Y., and Zheng, Z., “Permeable Graphited Hemp Fabrics-Based, Wearing-Comfortable Pressure Sensors for Monitoring Human Activities,” Chemical Engineering Journal, Vol. 403, 2021, 126191.
  •  
  • 54. Siddika, A., Hossain, M., and Harmon, J., “Hemp-Based Electronic Textiles for Sustainable and Wearable Applications,” ACS Sustainable Chemistry & Engineering, Vol. 11, No. 41, 2023, pp. 14913-14920.
  •  
  • 55. Um, J.H., Ahn, C.Y., Kim, J., Jeong, M., Sugn, Y.E., Cho, Y.H., Kim, S.S., and Yoon, W.S., “From Grass to Battery Anode: Agricultural Biomass Hemp-Derived Carbon for Lithium Storage,” RSC Advances, Vol. 56, 2018, pp. 32231-32240.
  •  
  • 56. Guan, Z., Guan, Z., Li, Z., Liu, J., and Yu, K., “Characterization and Preparation of Nanoporous Carbon Derived from Hemp Stems as Anode for Lithium-Ion Batteries,” Nanoscale Research Letters, Vol. 14, 2019, p. 338.
  •  
  • 57. Antoran, D., Alvira, D., Peker, M.E., Malon, H., Irusta, S., Sebastian, V., and Manya, J.J., “Waste Hemp Hurd as a Sustainable Precursor for Affordable and High-Rate Hard Carbon-Based Anodes in Sodium-Ion Batteries,” Energy & Fuels, Vol. 37, No. 13, 2023, pp. 9650–9661.
  •  
  • 58. Ou, H., Pei, B., Zhou, Y., Yang, M., Pan, J., Liang, S., and Cao, X., “From Natural Fibers to High-Performance Anodes: Sisal Hemp Derived Hard Carbon for Na-/K-Ion Batteries and Mechanism Exploration,” Small Methods, Vol. 9, No. 1, 2024, 2400839.
  •  
  • 59. Wang, P., Gong, Z., Ye, K., Gao, Y., Zhu, K., Yan, J., Wang, G., and Cao, D., “N-Rich Biomass Carbon Derived from Hemp as a Full Carbon-Based Potassium Ion Hybrid Capacitor Anode,” Applied Surface Science, Vol. 553, 2021, 149569.
  •  
  • 60. Qiu, P., Chen, H., Zhang, H., Wang, H., Wang, L., Guo, Y., Qi, J., Yi, Y., and Zhang, G., “Hard Carbon as Anodes for Potassium-Ion Batteries: Developments and Prospects,” Inorganics, Vol. 12, No. 12, 2024, p. 302.
  •  
  • 61. Li, X., Zhou, Y., Deng, B., Li, J., and Xiao, Z., “Research Progress of Biomass Carbon Materials as Anode Materials for Potassium-Ion Batteries,” Frontiers in Chemistry, Vol. 11, 2023, 1162909.
  •  
  • 62. Liu, H., Xu, Z., Guo, Z., Feng, J., Li, H., Aiu, T., and Titirici, M., “A Life Cycle Assessment of Hard Carbon Anodes for Sodium-Ion Batteries,” Philosophical Transactions of the Royal Society A, Vol. 379, No. 2209, 2021, 20200340.
  •  

This Article

Correspondence to

  • Hui Yun Hwang
  • School of Electronics and Mechanical Engineering, Gyeongkuk National Univeristy

  • E-mail: hyhwang@gknu.ac.kr