Original Article
  • Fabrication and Characterization of Self-Assembled Polyacrylic Acid/Polyaniline Multilayer Free-Standing Composite Electrodes Based on Non-Wood Cellulose Nanofibers
  • Jeong-Woo Kim*, Woo Jeong Kim*, Seungmin Yu**, Oh Hun Kwon***, Seung Geun Kim****, Dong Hun Kim****, Byoung-Suhk Kim*, **, *****†

  • * Department of Carbon Composites Convergence Materials Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea
    ** Department of JBNU-KIST Industry-Academia Convergence Research, Jeonbuk National University, Jeonju 54896, Republic of Korea
    *** Korea Institute of Convergence Textile, Iksan 54588, Republic of Korea
    **** Jirisan Hanji Paper Co., Ltd., Namwon 55727, Republic of Korea
    ***** Department of Organic Materials & Textile Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea

  • 비목재 셀룰로오스 나노섬유 기반의 프리스탠딩 전극용 Polyacrylic acid/Polyaniline 다층자기조립 복합재 제조 및 특성
  • 김정우* · 김우정* · 유승민** · 권오훈*** · 김승근**** · 김동훈**** · 김병석*, **, *****†

  • This article is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.


References
  • 1. Mahalingam, S., Manap, A., Lau, K.S., Floresyona, D., Rachman, R.M., Pradanawati, S.A., Rabeya, R., Chia, C.H., Afandi, N., and Nugroho, A., “Review of bioresource-based conductive composites for portable flexible electronic devices,” Renewable and Sustainable Energy Reviews, Vol. 189, 2024, pp. 113999.
  •  
  • 2. Zhang, S., Chhetry, A., Zahed, M.A., Sharma, S., Park, C., Yoon, S., and Park, J.Y., “On-skin ultrathin and stretchable multifunctional sensor for smart healthcare wearables,” npj Flexible Electronics, Vol. 6, No.1, 2022, 11.
  •  
  • 3. Wang, Z., Wu, Y., Zhu, B., Chen, Q., Wang, L., Zhao, Y., and Wu, D., “A magnetic soft robot with multimodal sensing capability by multimaterial direct ink writing,” Additive Manufacturing, Vol. 61, 2023, 103320.
  •  
  • 4. Heng, W., Solomon, S., and Gao, W., “Flexible electronics and devices as human–machine interfaces for medical robotics,” Advanced Materials, Vol. 34, No. 16, 2022, pp. 2107902.
  •  
  • 5. Jahirul, M.I., Rasul, M.G., Schaller, D., Khan, M.M.K., Hasan, M.M., and Hazrat, M.A., “Transport fuel from waste plastics pyrolysis–A review on technologies, challenges and opportunities,” Energy Conversion and Management, Vol. 258, 2022, pp. 115451.
  •  
  • 6. Zhu, H., Luo, W., Ciesielski, P.N., Fang, Z., Zhu, J.Y., Henriksson, G., Himmel, M.E., and Hu, L., “Wood-derived materials for green electronics, biological devices, and energy applications,” Chemical Reviews, Vol. 116, No. 16, 2016, pp. 9305-9374.
  •  
  • 7. Pennells, J., Godwin, I.D., Amiralian, N., and Martin, D.J. “Trends in the production of cellulose nanofibers from non-wood sources,” Cellulose, Vol. 27, No. 2, 2020, pp. 575-593.
  •  
  • 8. Eichhorn, S.J., Dufresne, A., Aranguren, M., Marcovich, N.E., Capadona, J.R., Rowan, S.J., Weder, C., Thielemans, W., Roman, M., Renneckar, S., Gindl, W., Veigel, S., Keckes, J., Yano, H., Abe, K., Nogi, M., Nakagaito, A.N., Mangalam, A., Simonsen, J., Benight, A.S., Bismarck, A., Berglund, L.A., and Peijs, T., “Review: current international research into cellulose nanofibres and nanocomposites,” Journal of Materials Science, Vol. 45, No. 1, 2010, pp. 1-33.
  •  
  • 9. Hu, Z., Huang, F., and Cao, Y., “Layer-by-Layer Assembly of Multilayer Thin Films for Organic Optoelectronic Devices,” Small Methods, Vol. 1, No. 12, 2017, pp. 1700264.
  •  
  • 10. Richardson, J.J., Cui, J., Björnmalm, M., Braunger, J.A., Ejima, H., and Caruso, F., “Innovation in Layer-by-Layer Assembly,” Chem. Rev., Vol. 116, No. 23, 2016, pp. 14828-14867.
  •  
  • 11. Zare, E.N., Makvandi, P., Ashtari, B., Rossi, F., Motahari, A., and Perale, G., “Progress in Conductive Polyaniline-Based Nanocomposites for Biomedical Applications: A Review,” Journal of Medicinal Chemistry, Vol. 63, No. 1, 2020, pp. 1-22.
  •  
  • 12. Mei, Y., Shen, Z., Kundu, S., Dennis, E., Pang, S., Tan, F., Yue, G., Gao, Y., Dong, C., Liu, R., Zhang, W., and Saidaminov, M.I., “Perovskite solar cells with polyaniline hole transport layers surpassing a 20% power conversion efficiency,” Chemistry of Materials, Vol. 33, No. 12, 2021, pp. 4679-4687.
  •  
  • 13. Li, G., Shehzad, M.A., Ge, Z., Wang, H., Yasmin, A., Yang, X., Ge, X., Wu, L., and Xu, T., “In-situ grown polyaniline catalytic interfacial layer improves water dissociation in bipolar membranes,” Separation and Purification Technology, Vol. 275, 2021, 119167.
  •  
  • 14. Wen, J., Wang, S., Feng, J., Ma, J., Zhang, H., Wu, P., Li, G., Wu, Z., Meng, F., Li, L., and Tian, Y., “Recent progress in polyaniline-based chemiresistive flexible gas sensors: design, nanostructures, and composite materials,” Journal of Materials Chemistry A, Vol. 12, No. 11, 2024, pp. 6190-6210.
  •  
  • 15. Lu, D., Li, J., Zhang, D., Li, L., Tong, Z., Ji, H., Wang, J., Chi, C., and Qu, H.Y., “Layer-by-layer-assembled polyaniline/ MXene thin film and device for improved electrochromic and energy storage capabilities,” ACS Applied Polymer Materials, Vol. 6, No. 20, 2024, pp. 12492-12502.
  •  
  • 16. Firda, P.B.D., and Jeon, J.-W., “Recovery of Electrochemical Properties of Polyaniline-Based Multilayer Films with Improved Electrochemical Stability,” ACS Applied Polymer Materials, Vol. 4, No. 7, 2022, pp. 4850-4859.
  •  
  • 17. Jamadade, V.S., Dhawale, D.S., and Lokhande, C.D., “Studies on electrosynthesized leucoemeraldine, emeraldine and pernigraniline forms of polyaniline films and their supercapacitive behavior,” Synthetic Metals, Vol. 160, No. 9-10, 2010, pp. 955-960.
  •  
  • 18. Stejskal, J., Trchová, M., Bober, P., Humpolíček, P., Kašpárková, V., Sapurina, I., Shishov, M.A., and Varga, M., “Conducting polymers: polyaniline,” Encyclopedia of Polymer Science and Technology, 2002, pp. 1-44.
  •  
  • 19. Huang, W.S., Humphrey, B.D., and MacDiarmid, A.G., “Polyaniline, a novel conducting polymer. Morphology and chemistry of its oxidation and reduction in aqueous electrolytes,” J. Chem. SOC., Faraday Trans. 1: Physical Chemistry in Condensed Phases, Vol. 82, No. 8, 1986, pp. 2385-2400.
  •  
  • 20. Ramkumar, R., Sundaram, M.M., “Electrochemical synthesis of polyaniline cross-linked NiMoO4 nanofibre dendrites for energy storage devices,” New Journal of Chemistry, Vol. 40, 2016, pp. 7456-7464.
  •  

This Article

Correspondence to

  • Byoung-Suhk Kim
  • * Department of Carbon Composites Convergence Materials Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea
    ** Department of JBNU-KIST Industry-Academia Convergence Research, Jeonbuk National University, Jeonju 54896, Republic of Korea
    ***** Department of Organic Materials & Textile Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea

  • E-mail: kbsuhk@jbnu.ac.kr