Original Article
  • Design of Wing-shaped Leading-edge Stealth Honeycomb Sandwich Composites Based on Gradual EM Wave Attenuation
  • Chae-Hwan Lim*, Dong-Jun Hong*, Seong-Haeng Heo*, Han-Jun Seo**, Won-Ho Choi***, Seong-Weon Hong***, Hyun-Seok Lee***, Soo-Yong Lee*, **, Young-Woo Nam*, ****†

  • * Graduate School of Aerospace and Mechanical Engineering, Korea Aerospace University
    ** Department of Aerospace and Mechanical Engineering, Korea Aerospace University
    *** Stealth Technology Section, UCAV Development Team, Korean Air
    **** Department of Smart Drone Engineering, Korea Aerospace University

  • 전자기파 손실 감쇠 특성을 갖는 날개 앞전 스텔스 샌드위치 복합재 구조물의 광대역 RCS 저감 설계
  • 임채환* · 홍동준* · 허성행* · 서한준** · 최원호*** · 홍성원*** · 이현석*** · 이수용*, ** · 남영우*, ****†

  • This article is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

References
  • 1. WESTWICK, Peter, Stealth: The Secret Contest to Invent Invisible Aircraft. Oxford University Press, 2019.
  •  
  • 2. Akman, O., Kavas, H., Baykal, A., Toprak, M.S., Çoruh, A., Aktas, B., “Magnetic metal nanoparticles coated polyacrylonitrile textiles as microwave absorber,” Journal of Magnetism and Magnetic Materials, Vol. 327, 2013, pp. 151-158.
  •  
  • 3. Ding, D.H., Zhou, W.C., Luo, F., and Zhu, D.M., “Influence of pyrolytic carbon coatings on complex permittivity and microwave absorbing properties of Al2O3 fiber woven fabrics,” Transactions of Nonferrous Metals Society of China, Vol. 22, 2012, pp. 354-359.
  •  
  • 4. Park, K.Y., Han, J.H., Lee, S.B., and Yi, J.W., “Microwave absorbing hybrid composites containing NieFe coated carbon nanofibers prepared by electroless plating,” Composites Part A: Applied Science and Manufacturing, Vol. 42, No. 5, 2011, pp. 573-578.
  •  
  • 5. Wen, B., Wang, T., and Cheng, K., “Simulation research on dynamic RCS characteristics of cruise missile,” IOP Conference Series: Earth and Environmental Science, Vol. 300, No. 2, 2019, p. 022170. IOP Publishing.
  •  
  • 6. Ishimaru, A., Jaruwatanadilok, S., and Kuga, Y., “Multiple scattering effects on the radar cross section (RCS) of objects in a random medium including backscattering enhancement and shower curtain effects,” Waves in Random Media, Vol. 14, No. 4, 2004, pp. 499-511.
  •  
  • 7. Zhao, S., Zhang, X., and Li, H., “RCS reduction based on double parabolic phased metasurface,” Journal of Physics D: Applied Physics, Vol. 56, No. 43, 2023, Article No. 435301.
  •  
  • 8. Ufimtsev, P.Y., “Comments on diffraction principles and limitations of RCS reduction techniques,” Proceedings of the IEEE, Vol. 84, No. 12, 1996, pp. 1830-1851.
  •  
  • 9. Deng, X., Ding, C., Wang, Y., Li, Z., Cheng, G., Chen, Z., Lv, X., and Shi, J., “Investigation into wideband electromagnetic stealth device based on plasma array and radar-absorbing materials,” Plasma Science and Technology, Vol. 24, No. 11, 2022, Article No. 114006.
  •  
  • 10. Pinho, M.S., Luisa, M., and Regina, C., “Performance of radar absorbing materials by waveguide measurements for X- and Ku-band frequencies,” European Polymer Journal, Vol. 38, 2002, pp. 2321-2327.
  •  
  • 11. Tegowski, B., and Koelpin, A., “Accuracy limitations of interferometric radar owing to the radar cross section of its antenna,” IEEE Transactions on Microwave Theory and Techniques, 2024.
  •  
  • 12. Zhang, Z., Zhang, L., Ren, Z., Zhang, Y., Hao, T., Liu, D., Xu, L., Liu, W., Sun, J., Ji, H., and Wang, Y., “Multifunctional Ultrathin Metasurface with a Low Radar Cross Section and Variable Infrared Emissivity,” ACS Applied Materials & Interfaces, Vol. 16, No. 16, 2024, pp. 21109-21117.
  •  
  • 13. Lin, B., Huang, W., Guo, J., Wang, Z., Si, K., and Ye, H., “An absorptive coding metasurface for ultra-wideband radar cross-section reduction,” Scientific Reports, Vol. 14, No. 1, 2024, Article No. 12397.
  •  
  • 14. Pinto, J., Whyman, N.L., Ritchie, M.A., and Griffiths, H., “Statistical analysis of hypersonic glide vehicle radar cross section,” IET Radar, Sonar & Navigation, Vol. 18, No. 1, 2024, pp. 158-170.
  •  
  • 15. Chen, P., Ren, J., Zhang, T., Zheng, Q., and Pang, X., “An orbital angular momentum metasurface antenna with broadband radar cross section reduction,” AEU-International Journal of Electronics and Communications, Vol. 177, 2024, Article No. 155186.
  •  
  • 16. Abdelaziz, A.H., Shohdy, A., Mohammed, S.A., and Montaser, A.M., “Reducing radar cross section through absorption metamaterial antenna for concealment and detection applications,” AEU-International Journal of Electronics and Communications, Vol. 178, 2024, Article No. 155260.
  •  
  • 17. Noh, J.S., Noh, Y.D., Ha, J.H., Nam, Y.W., and Kwak, B.S., Investigation of scarf-patch-repaired radar-absorbing composite using CA absorbers subjected to low-velocity impact loads,” Journal of Reinforced Plastics and Composites, 2024 (Accepted).
  •  
  • 18. Park, Y.J., and Lee, C.G., “A study on ferrite-rubber composite for C-band electromagnetic wave absorber,” In Proceedings of the 3rd Conference on National Defense Materials, 2000, pp. C178-C185.
  •  
  • 19. Kaynak, A., Polat, A., and Yilmazer, U., “Some microwave and mechanical properties of carbon fiber/polypropylene and carbon black/polypropylene composites,” Materials Research Bulletin, Vol. 31, No. 10, 1996, pp. 1195-1206.
  •  
  • 20. Sandler, J., Shaffer, M.S.P., Prasse, T., Bauhofer, W., Schulte, K., and Windle, A.H., “Development of a dispersion process for carbon nanotubes in an epoxy matrix and resulting electrical properties,” Polymer, Vol. 40, 1999, pp. 5967-5971.
  •  
  • 21. Rosa, I.M.D., Mancinelli, R., Sarasini, F., Sarto, M.S., and Tamburrano, A., “Electromagnetic design and realization of innovative fiber-reinforced broad-band absorbing screens,” IEEE Transactions on Electromagnetic Compatibility, Vol. 51, No. 3, 2009, pp. 700-707.
  •  
  • 22. Choi, I., Lee, D., and Lee, D.G., “Radar absorbing composite structures dispersed with nano-conductive particles,” Composite Structures, Vol. 122, 2015, pp. 23-30.
  •  
  • 23. Kim, J.B., Lee, S.K., and Kim, C.G., “Comparison study on the effect of carbon nanomaterials for single-layer microwave absorbers in X-band,” Composites Science and Technology, Vol. 68, No. 14, 2008, pp. 2909-2916.
  •  
  • 24. Micheli, D., Vricella, A., Pastore, R, Delfini, A., Giusti, A., Albano, M., Marchetti, M., and Moglie, F., “Ballistic and electromagnetic shielding behaviour of multifunctional Kevlar fiber reinforced epoxy composites modified by carbon nanotubes,” Carbon, Vol. 104, 2016, pp. 141-156.
  •  
  • 25. Choi, W.H., Shin, J.H., Song, T.H., Kim, J.B., Cho, C.M., Lee, W. J., and Kim, C.G., “Design of circuit-analog (CA) absorber and application to the leading edge of a wingshaped structure,” IEEE Transactions on Electromagnetic Compatibility, Vol. 56, No. 3, 2014, pp. 599-607.
  •  
  • 26. Lee, W.J., Lee, J.W., and Kim, C.G., “Characteristics of an electromagnetic wave absorbing composite structure with a conducting polymer electromagnetic bandgap (EBG) in the X-band,” Composites Science and Technology, Vol. 68, No. 12, 2008, pp. 2485-2489.
  •  
  • 27. Papanicolaou, G.C., Papaefthymiou, K.P., Koutsomitopoulou, A.F., Portan, D.V., and Zaoutsos, S.P., “Effect of dispersion of MWCNTs on the static and dynamic mechanical behavior of epoxy matrix nanocomposites,” Journal of Materials Science, Vol. 47, 2012, pp. 350-359.
  •  
  • 28. Shah, A., Wang, Y., Huang, H., Zhang, L., Wang, D., Zhou, L., and Zhang, Z., “Microwave absorption and flexural properties of Fe nanoparticle/carbon fiber/epoxy resin composite plates,” Composite Structures, Vol. 131, 2015, pp. 1132-1141.
  •  
  • 29. Cao, W., Wen, Y., Jiang, C., Yu, Y., Wang, Y., and Ma, Z., “A pure dielectric metamaterial absorber with broadband and thin thickness based on a cross-hole array structure,” Chinese Physics B, Vol. 31, No. 11, 2022, Article No. 117801.
  •  
  • 30. Wang, Y., Li, T., Zhao, L., Hu, Z., and Gu, Y., “Research progress on nanostructured radar absorbing materials,” Energy and Power Engineering, Vol. 3, No. 4, 2011, pp. 580-584.
  •  
  • 31. Choi, W.H., Jang, H.K., Shin, J.H., Song, T.H., Kim, J.B., Lee, W.J., and Kim, C.G, “Wideband Radar Absorbing Structure with Low Density Material and Load bearing MWCNT Added Composite Material,” Electronics Letters, Vol. 49, No. 9, 2013, pp. 620-622.
  •  
  • 32. Panwar, R., Agarwala, V., and Singh, D., “A Cost-effective Solution for Development of Broadband Radar Absorbing Material Using Electronic Waste,” Ceramics International, Vol. 41, No. 2, 2015, pp. 2923-2930.
  •  
  • 33. Biswas, M.C., Chowdhury, A., Hossain, M.M., and Hossain, M.K., “Applications, Drawbacks, and Future Scope of Nanoparticle-based Polymer Composites,” In Nanoparticle-based Polymer Composites, Woodhead Publishing, 2022, pp. 243-275.
  •  
  • 34. Lan, D., Gao, Z., Zhao, Z., Kou, K., and Wu, H., “Application Progress of Conductive Conjugated Polymers in Electromagnetic Wave Absorbing Composites,” Composites Communications, Vol. 26, 2021, Article No. 100767.
  •  
  • 35. Borkar, V.G., Ghosh, A., Singh, R.K., and Chourasia, N., “Radar cross-section measurement techniques,” Defence Science Journal, Vol. 60, No. 2, 2010, pp. 204-212.
  •  
  • 36. Potgieter, M., Odendaal, J.W., Blaauw, C., and Joubert, J., “Bistatic RCS measurements of large targets in a compact range,” IEEE Transactions on Antennas and Propagation, Vol. 67, No. 4, 2019, pp. 2847-2852.
  •  
  • 37. Lima, U.R., Nasar, M.C., Nasar, R.S., Rezende, M.C., and Araujo, J.H., “Ni-Zn Nanoferrite for Radar-absorbing Material,” Journal of Magnetism and Magnetic Materials, Vol. 320, No. 10, 2008, pp. 1666-1670.
  •  
  • 38. Zhao, Y., Xing, S., Tang, N., Wu, N., Tang, J., He, Y., Yin, C., and Zhang, J., “A multi resonant wave-absorbing honeycomb sandwich structure with excellent electrical performance damage tolerance,” Composite Structures, Vol. 325, 2023, Article No. 117581.
  •  
  • 39. Yuan, C.X., Zhou, Z.X., Zhang, J.W., Xiang, X.L., Feng, Y., and Sun, H.G., “Properties of Propagation of Electromagnetic Wave in a Multilayer Radar-absorbing Structure with Plasma and Radar-absorbing Material,” IEEE Transactions on Plasma Science, Vol. 39, No. 9, 2011, pp. 1768-1775.
  •  
  • 40. Choi, W.H., Shin, J.H., Song, T.H., Kim, J.B., Cho, C.M., Lee, W. J., and Kim, C.G, “Design of circuit-analog (CA) absorber and application to the leading edge of a wingshaped structure,” IEEE Transactions on Electromagnetic Compatibility, Vol. 56, No. 3, 2014, pp. 599-607.
  •  
  • 41. Fortunati, E., D’Angelo, F., Martino, S., Orlacchio, A., Kenny, J. M., and Armentano, I., “Carbon Nanotubes and Silver Nanoparticles for Multifunctional Conductive Biopolymer Composites,” Carbon, Vol. 49, No. 7, 2011, pp. 2370-2379.
  •  
  • 42. Wang, C., Chen, M., Lei, H., Yao, K., Li, H., Wen, W., and Fang, D., “Radar stealth and mechanical properties of a broadband radar absorbing structure,” Composites Part B: Engineering, Vol. 123, 2017, pp. 19-27.
  •  
  • 43. Lee, S.E., Kang, J.H., and Kim, C.G., “Fabrication and design of multi-layered radar absorbing structures of MWNT-filled glass/epoxy plain-weave composites,” Composite Structures, Vol. 76, No. 4, 2006, pp. 397-405.
  •  
  • 44. Bollen, Pierre, Quievy, N., Detrembleur, C., Thomassin, J.M., Monnereau, L., Bailly, C., and Pardoen, T., “Processing of a new class of multifunctional hybrid for electromagnetic absorption based on a foam filled honeycomb,” Materials & Design, Vol. 89, 2016, pp. 323-334.
  •  
  • 45. Choi, W.H., Jang, H.K., Shin, J.H., Song, T.H., Kim, J.K., and Kim, C.G., “Monostatic RCS reduction by gap-fill with epoxy/MWCNT in groove pattern,” Journal of the Korean Institute of Electromagnetic and Science, Vol. 12, No. 1, 2012, pp. 101-106.
  •  
  • 46. Vinoy, K.J., and Jha, R.M., Radar Absorbing Materials: From Theory to Design and Characterization. Springer, 1996.
  •  
  • 47. Micheli, D., Pastore, R., Apollo, C., Marchetti, M., Gradoni, G., Primiani, V.M., and Moglie, F., “Broadband electromagnetic absorbers using carbon nanostructure-based composites,” IEEE Transactions on Microwave Theory and Techniques, Vol. 59, No. 10, 2011, pp. 2633-2646.
  •  
  • 48. Baek, S.M., Lee, W.J., and Joo, Y.S., “A study on a radar absorbing structure for aircraft leading edge application,” International Journal of Aeronautical and Space Sciences, Vol. 18, No. 2, 2017, pp. 215-221.
  •  
  • 49. Choi, W.H., and Kim, C.G., “A Broadband Microwave-Absorbing Honeycomb Structure with a Novel Design Concept,” Composites Part B: Engineering, Vol. 83, 2015, pp. 14-20.
  •  
  • 50. Baek, S.M., and Lee, W.J., “A Lightweight, Flexible, and Polarization-insensitive Microwave Absorbing Honeycomb Core Using Conductive Losses in Printed Periodic Pattern,” Composites Part A: Applied Science and Manufacturing, Vol. 180, 2024, Article No. 108089.
  •  
  • 51. Zhou, P., Huang, L., Xie, J., Liang, D., Lu, H., and Deng, L., “A study on the effective permittivity of carbon/PI honeycomb composites for radar absorbing design,” IEEE Transactions on Antennas and Propagation, Vol. 60, No. 8, 2012, pp. 3679-3683.
  •  
  • 52. Kim, S.H., Lee, S.Y., Zhang, Y., Park, S.J., and Gu, J., “Carbon-based radar absorbing materials toward stealth technologies,” Advanced Science, Vol. 10, No. 32, 2023, Article No. 2303104.
  •  
  • 53. Pozar, D.M., Microwave Engineering. New Jersey: Wiley, 2011.
  •  
  • 54. Deng, Y., Zheng, Y., Zhang, D., Han, C., Cheng, A., Shen, J., and Zhang, H., “A Novel and Facile-to-synthesize Three-dimensional Honeycomb-like Nano-Fe3O4@C Composite: Electromagnetic Wave Absorption with Wide Bandwidth,” Carbon, Vol. 169, 2020, pp. 118-128.
  •  
  • 55. Xian, Y.-X., Yang, J.-S., Li, H.-Z., Xu, C., and Wang, X.-W., “A Novel Frequency-Selective Surface-Enhanced Composite Honeycomb Absorber with Excellent Microwave Absorption,” Polymers, Vol. 16, No. 23, 2024, Article No. 3312.
  •  
  • 56. Nie, M., Ren, Y., Wang, H., and Qiu, Q., “Recovery of Wave-Absorbing Efficiency for Honeycomb Sandwich Structure Under Penetrating Damage via Composite Patch Electromagnetic Parameters Design,” Materials Today Communications, Vol. 41, 2024, Article No. 110799.
  •  
  • 57. Luo, H., Chen, F., Wang, X., Dai, W., Xiong, Y., Yang, J., and Gong, R., “A Novel Two-Layer Honeycomb Sandwich Structure Absorber with High-Performance Microwave Absorption,” Composites Part A: Applied Science and Manufacturing, Vol. 119, 2019, pp. 1-7.
  •  
  • 58. Liu, S., Zhang, F., Chao, B., Fu, W., Deng, K., Li, Y., and Wu, H. “Based on the preparation of dual-absorber agents using Ni and Ni/rGO for the fabrication of a dual honeycomb nested structure for wideband microwave absorption,” Composites Part B: Engineering, Vol. 284, 2024, Article No. 111735.
  •  
  • 59. Zhang, J., Li, D., and Wang, M., “Multi-material fused deposition modelling of structural-functional integrated absorber with multi-scale structure possessing tunable broadband microwave absorption,” Materials & Design, Vol. 246, 2024, Article No. 113315.
  •  
  • 60. Yang, X., Qiang, R., Shao, Y., Xue, R., Wu, X., Zhang, Y., Ren, F., Ding, Y., Niu, W., Ma, Q., and Wang, Y., “Constructing of three-dimensional molybdenum carbide nanoparticles embedded in honeycomb carbon as efficient microwave absorbers,” Journal of Alloys and Compounds, Vol. 1004, 2024, Article No. 175732.
  •  
  • 61. Choi, J.-H., Jang, M.-S., Jang, W.-H., and Kim, C.-G., “Investigation on microwave absorption characteristics of conductive-coated honeycomb absorber,” Composite Structures, Vol. 242, 2020, Article No. 112129.
  •  
  • 62. Yang, J., Pang, Y., Wang, J., Sui, S., Jiang, W., Zhang, J., and Qu, S., “Achieving broadband RCS reduction using carbon fiber connected composite via scattering mechanism,” Composites Science and Technology, Vol. 200, 2020, Article No. 108410.
  •  
  • 63. Lee, W.J., Baek, S.M., and Joo, Y.S., “Development of a composite EM wave absorber for the leading edge of low observable aircraft,” Advanced Composite Materials, Vol. 28, Suppl. 1, 2019, pp. 79-90.
  •  
  • 64. Choi, W.H., Shin, J.H., Song, T.H., Kim, J.B., Cho, C.M., Lee, W.J., and Kim, C.G., “Design of circuit-analog (CA) absorber and application to the leading edge of a wing-shaped structure,” IEEE Transactions on Electromagnetic Compatibility, Vol. 56, No. 3, 2013, pp. 599-607.
  •  
  • 65. Pang, Y., Li, Y., Wang, J., Yan, M., Chen, H., Sun, L., Xu, Z., and Qu, S., “Carbon fiber assisted glass fabric composite materials for broadband radar cross section reduction,” Composites Science and Technology, Vol. 158, 2018, pp. 19-25.
  •  
  • 66. Liu, C., He, T., Hu, C., Qian, Q., Hao, Y., Xu, L., Lu, H., and Ji, G., “The Optimized Design of Sandwich Structured SiO2/C@SiC/SiO2 Composites Through Numerical Simulation for Temperature‐Resistant Radar and Infrared Compatible Stealth,” Advanced Functional Materials, 2024, Article No. 2416108.
  •  
  • 67. Zhou, Q., Yin, X., Ye, F., Liu, X., Cheng, L., and Zhang, L., “A novel two-layer periodic stepped structure for effective broadband radar electromagnetic absorption,” Materials & Design, Vol. 123, 2017, pp. 46-53.
  •  
  • 68. Feng, J., Zhang, Y., Wang, P., and Fan, H., “Oblique incidence performance of radar absorbing honeycombs,” Composites Part B: Engineering, Vol. 99, 2016, pp. 465-471.
  •  
  • 69. Xie, S., Jing, K., Zhou, H., and Liu, X., “Mechanical properties of Nomex honeycomb sandwich panels under dynamic impact,” Composite Structures, Vol. 235, 2020, p. 111814.
  •  
  • 70. Schubel, P.M., Luo, J.J., and Daniel, I.M., “Low velocity impact behavior of composite sandwich panels,” Composites Part A: Applied Science and Manufacturing, Vol. 36, No. 10, 2005, pp. 1389-1396.
  •  
  • 71. Fischer, C., Hähnel, F., Wolf, K., and Markmiller, J., “Impact analysis of compression preloaded honeycomb sandwich structures,” Journal of Sandwich Structures & Materials, Vol. 26, No. 3, 2024, pp. 350-372.
  •  
  • 72. Nam, Y.W., Choi, J.H., Jang, M.S., Lee, W.J., and Kim, C.G., “Radar-absorbing structure with nickel-coated glass fabric and its application to a wing airfoil model,” Composite Structures, Vol. 180, 2017, pp. 507-512.
  •  
  • 73. Choi, W.H., Kwak, B.S., Kweon, J.H., and Nam, Y.W., “Radar-absorbing foam-based sandwich composite with electroless nickel-plated glass fabric,” Composite Structures, Vol. 243, 2020, Article No. 112252.
  •  
  • 74. Agrawal, P.M., Sudalayandi, B.S., Raff, L.M., and Komanduri, R., “A comparison of different methods of Young’s modulus determination for single-wall carbon nanotubes (SWCNT) using molecular dynamics (MD) simulations,” Computational Materials Science, Vol. 38, No. 2, 2006, pp. 271-281.
  •  
  • 75. Hussain, S., Jha, P., Chouksey, A., Raman, R., Islam, S.S., Islam, T., and Choudhary, P.K., “Spectroscopic investigation of modified single-wall carbon nanotube (SWCNT),” Journal of Modern Physics, Vol. 2, No. 6, 2011, p. 538.
  •  
  • 76. Choi, K.S., Sim, D., Choi, W., Shin, J.H., and Nam, Y.W., “Ultra-high Temperature EM Wave Absorption Behavior for Ceramic/Sendust-aluminosilicate Composite in X-band,” Composites Research, Vol. 35, No. 3, 2022, pp. 201-215.
  •  

This Article

Correspondence to

  • Young-Woo Nam
  • * Graduate School of Aerospace and Mechanical Engineering, Korea Aerospace University
    **** Department of Smart Drone Engineering, Korea Aerospace University

  • E-mail: ywnam@kau.ac.kr