Original Article
  • Prediction of Ablation Properties of Polyimide Based Thermal Protective Composites under LEO and sub-LEO Environment
  • Inseok Jeon*, Seunghwa Yang**†

  • * Chung-ang University, The School of Energy System Engineering
    ** Chung-ang University, The Department of Energy System Engineering

  • 지구 저궤도 및 준저궤도 환경에서의 폴리이미드 기반 열보호 복합재료의 삭마특성 예측
  • 전인석* · 양승화**†

  • This article is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

References
  • 1. Reddy, M.R., “Effect of Low Earth Orbit Atomic Oxygen on Spacecraft Materials,” Journal of Materials Science, Vol. 30, 1995, pp. 281-307.
  •  
  • 2. Hansen, R.H., Pascale, J.V., De Benedictis, T., and Rentzepis, P.M., “Effect of Atomic Oxygen On Polymers,” Journal of Polymer Science Part A: General Papers, Vol. 3, No. 6, 1965, pp. 2205-2214.
  •  
  • 3. Minton, T.K., Wright, M.E., Tomczak, S.J., Marquez, S.A., Shen, L., Brunsvold, A.L., Cooper, R., Zhang, J., Vij, V., Guenthner, A.J., and Petteys, B.J., “Atomic Oxygen Effects on POSS Polyimides in Low Earth Orbit,” ACS Applied Materials & Interfaces, Vol. 4, No. 2, 2012, pp. 492-502.
  •  
  • 4. Verker, R., Grossman, E., and Eliaz, N., “Erosion of POSS-polyimide Films under Hypervelocity Impact and Atomic Oxygen: The Role of Mechanical Properties at Elevated Temperatures,” Acta Materialia, Vol. 57, No. 4, 2009, pp. 1112-1119.
  •  
  • 5. Yokota, K., Tagawa, M., Fujimoto, Y., Ide, W., Kimoto, Y., Tsuchiya, Y., Goto, A., Yukumatsu, K., Miyazaki, E., and Imamura, S., “Effect of Simultaneous N2 Collisions on Atomic Oxygen-induced Polyimide Erosion in Sub-low Earth Orbit: Comparison of Laboratory and SLATS Data,” CEAS Space Journal, Vol. 13, 2021, pp. 389-397.
  •  
  • 6. Kumar, S.K.S., Ankem, V.A., Kim, Y.H., Choi, C., and Kim, G.G., “Polybenzimidazole (PBI) Coated CFRP Composites as a Front Bumper Shield for Hypervelocity Impact Resistance in Low Earth Orbit(LEO) Environment,” Composites Research, Vol. 31, No. 3, 2018, pp. 83-87.
  •  
  • 7. de Groh, K.K., Banks, B., Guo, A., Ashmead, C.C., Mitchell, G. G., and Yi, G.T., “MISSE 6 Polymers Atomic Oxygen Erosion Data,” National Space & Missile Materials Symposium (NSMMS), 2010.
  •  
  • 8. De Groh, Kim K., and Bruce A. Banks, Atomic Oxygen Erosion Data from the MISSE 2-8 Missions. No. NASA/TM—2019-219982, 2019.
  •  
  • 9. Rahnamoun, A., and Van Duin, A.C.T., “Reactive Molecular Dynamics Simulation on the Disintegration of Kapton, POSS Polyimide, Amorphous Silica, and Teflon During Atomic Oxygen Impact Using the ReaxFF Reactive Force-field Method,” The Journal of Physical Chemistry A, Vol. 118, No. 15, 2014, pp. 2780-2787.
  •  
  • 10. Zeng, F., Peng, C., Liu, Y., and Qu, J., “Reactive Molecular Dynamics Simulations on the Disintegration of PVDF, FP-POSS, and Their Composite during Atomic Oxygen Impact,” The Journal of Physical Chemistry A, Vol. 119, No. 30, 2015, pp. 8359-8368.
  •  
  • 11. Jung, J., An, J., Kwon, S., and Yun, G.J., “Erosion Simulations and Quantification of the Temperature Effect by Atomic Oxygen on Polymer Matrix,” Composites Research, Vol. 37, No. 5, 2024, pp. 426-421.
  •  
  • 12. Ashraf, C., Vashisth, A., Bakis, C.E., and Van Duin, A.C., “Reactive Molecular Dynamics Simulations of the Atomic Oxygen Impact on Epoxies with Different Chemistries,” The Journal of Physical Chemistry C, Vol. 123, No. 24, 2019, pp. 15145-15156.
  •  
  • 13. Rahmani, F., Nouranian, S., Li, X., and Al-Ostaz, A., “Reactive Molecular Simulation of the Damage Mitigation Efficacy of POSS-, Graphene-, and Carbon Nanotube-loaded Polyimide Coatings Exposed to Atomic Oxygen Bombardment,” ACS Applied Materials & Interfaces, Vol. 9, No. 14, 2017, pp. 12802-12811.
  •  
  • 14. Cui, Z., Zhao, J., He, L., Jin, H., Zhang, J., and Wen, D. “A Reactive Molecular Dynamics Study of Hyperthermal Atomic Oxygen Erosion Mechanisms for Graphene Sheets,” Physics of Fluids, Vol. 32, No. 11, 2020, 112110.
  •  
  • 15. Goverapet Srinivasan, S., and van Duin, A.C., “Molecular-dynamics-based Study of the Collisions of Hyperthermal Atomic Oxygen with Graphene Using the ReaxFF Reactive Force Field,” The Journal of Physical Chemistry A, Vol. 115, No. 46, 2011, pp. 13269-13280.
  •  
  • 16. Cui, Z., Zhao, J., Yao, G., Li, Z., and Wen, D., “Molecular Insight of the Interface Evolution of Silicon Carbide under Hyperthermal Atomic Oxygen Impact,” Physics of Fluids, Vol. 34, No. 5. 052101, 2022.
  •  
  • 17. Morrissey, L.S., Rahnamoun, A., and Nakhla, S., “The Effect of Atomic Oxygen Flux and Impact Energy on the Damage of Spacecraft Metals,” Advances in Space Research, Vol. 66, No. 6, 2020, pp. 1495-1506.
  •  
  • 18. Jeon, I., Lee, S., and Yang, S., “Hyperthermal Erosion of Thermal Protection Nanocomposites under Atomic Oxygen and N2 Bombardment,” International Journal of Mechanical Sciences, Vol. 240, 2023, 107910.
  •  
  • 19. BIOVIA, Dassault Systèmes. Materials Studio. R2 (Dassault Systèmes BIOVIA, San Diego, 2017.
  •  
  • 20. Sun, H., Mumby, S.J., Maple, J.R., and Hagler, A.T., “An ab Initio CFF93 all-atom Force Field for Polycarbonates,” Journal of the American Chemical Society, Vol. 116, No. 7, 1994, pp. 2978-2987. (PCFF)
  •  
  • 21. Amsterdam Density Functional, Scientific Computing & Modelling, http://www.scm.com.
  •  
  • 22. Lele, A., Krstic, P., and Van Duin, A.C., “ReaxFF Force Field Development for Gas-phase hBN Nanostructure Synthesis,” The Journal of Physical Chemistry A, Vol. 126, No. 4, 2022, pp. 568-582.
  •  
  • 23. Evans, D.J., and Holian, B.L., “The Nose-hoover Thermostat,” The Journal of Chemical Physics, Vol. 83, No. 8, 1985, pp. 4069-4074.
  •  
  • 24. Jensen, B.D., Wise, K.E., and Odegard, G.M.. “The Effect of Time Step, Thermostat, and Strain Rate on ReaxFF Simulations of Mechanical Failure in Diamond, Graphene, and Carbon Nanotube,” Journal of Computational Chemistry, Vol. 36, No. 21, 2015, pp. 1587-1596.
  •  

This Article

Correspondence to

  • Seunghwa Yang
  • ** Chung-ang University, The Department of Energy System Engineering

  • E-mail: fafala@cau.ac.kr