Original Article
  • Manufacturing Strategies for Silicone Oil Based Stable Thermal Pastes with High Thermal Conductivity
  • Yongsu Jo*, Chae Bin Kim*,**†

  • * School of Chemical Engineering, Pusan National University, Busan 46241, Korea
    ** Department of Polymer Science and Engineering, Pusan National University, Busan 46241, Korea

  • 고열전도도 및 장기 안정성을 지닌 실리콘 오일 기반 방열 페이스트 제조법
  • 조용수* · 김채빈*,**†

  • This article is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

References
  • 1. Moore, A.L., and Shi, L., “Emerging Challenges and Materials for Thermal Management of Electronics,” Materials Today, Vol. 17, No. 4, 2014, pp. 163-174.
  •  
  • 2. Feng, C.-P., Chen, L.-B., Tian, G.-L., Wan, S.-S., Bai, L., Bao, R.-Y., Liu, Z.-Y., Yang, M.-B., and Yang, W., “Multifunctional Thermal Management Materials with Excellent Heat Dissipation and Generation Capability for Future Electronics,” ACS Applied Materials & Interfaces, Vol. 11, No. 20, 2019, pp. 18739-18745.
  •  
  • 3. Razeeb, K.M., Dalton, E., Cross, G.L., and Robinson, A.J., “Present and Future Thermal Interface Materials for Electronic Devices,” International Materials Reviews, Vol. 63, No. 1, 2017, pp. 1-21.
  •  
  • 4. Kang, H., Kim, H., An, J., Choi, S., Yang, J., Jeong, H., and Huh, S., “Thermal Conductivity Characterization of Thermal Grease Containing Copper Nanopowder,” Materials, Vol. 13, No. 8, 2020, pp. 1893.
  •  
  • 5. Liang, W., Ge, X., Ge, J., Li, T., Zhao, T., Chen, X., Zhang, M., Ji, J., Pang, X., and Liu, R., “Three-Dimensional Heterostructured Reduced Graphene Oxide-Hexagonal Boron Nitride-Stacking Material for Silicone Thermal Grease with Enhanced Thermally Conductive Properties,” Nanomaterials, Vol. 9, No 7, 2019, pp. 938.
  •  
  • 6. Deng, Y., and Jiang, Y., “High-performance, Safe, and Reliable Soft-metal Thermal Pad for Thermal Management of Electronics,” Applied Thermal Engineering, Vol. 199, 2021, pp. 117555.
  •  
  • 7. Gao, J., Yan, Q., Lv, L., Tan, X., Ying, J., Yang, K., Yu, J., Du, S., Wei, Q., Xiang, R., Yao, Y., Zeng, X., Sun, R., Wong, C.-P., Jiang, N., Lin, C.-T., and Dai, W., “Lightweight Thermal Interface Materials based on Hierarchically Structured Graphene Paper with Superior Through-plane Thermal Conductivity,” Chemical Engineering Journal, Vol. 419, 2021, pp. 129609.
  •  
  • 8. Meng, Q., Han, S., Araby, S., Zhao, Y., Liu, Z., and Lu, S., “Mechanically robust, electrically and thermally conductive graphene-based epoxy adhesives,” Journal of Adhesion Science and Technology, Vol. 33, No. 12, 2019, pp. 1337-1356.
  •  
  • 9. Zhang, H., Zhang, X., Fang, Z., Huang, Y., Xu, H., Liu, Y., Wu, D., Zhuang, J., and Sun, J., “Recent Advanced in Preparation, Mechanisms, and Applications of Thermally Conductive Polymer Composites: A Review,” Journal of Composites Science, Vol. 4, No. 4, 2020, pp. 180.
  •  
  • 10. Kim, C.B., Lee, J., Cho, J., and Goh, M., “Thermal Conductivity Enhancement of Reduced Graphene Oxide via Chemical Defect Healing for Efficient Heat Dissipation,” Carbon, Vol. 139, 2018, pp. 386-392.
  •  
  • 11. Lee, J., Hwang, S., Lee, S.-K., Ahn, S., Jang, S.G., You, N.-H., Kim, C.B., and Goh, M., “Optimizing Filler Network Formation in Poly(hexahydrotriaizine) for Realizing High Thermal Conductivity and Low Oxygen Permeation,” Polymer, Vol. 179, 2019, pp. 121639.
  •  
  • 12. Shin, H., and Kim, C.B., “Impact of Filler Aspect Ratio on Oxygen Transmission and Thermal Conductivity using Hexagonal Boron Nitride-Polymer Composites,” Composites Research, Vol. 34, No. 1, 2021, pp. 63-69.
  •  
  • 13. Min, S.-B., Kim, M., Hyun, K., Ahn, C.-W., and Kim, C.B., “Thermally Conductive 2D Filler Orientation Control in Polymer Using Thermophoresis,” Polymer Testing, Vol. 117, 2023, pp. 107838.
  •  
  • 14. Jeon, D., Yoon, Y., Kim, D., Lee, G., Ahn, S.-K., Choi, D., and Kim, C.B., “Fully Recyclable Covalent Adaptable Network Composite with Segregated Hexagonal Boron Nitride Structure for Efficient Heat Dissipation,” Macromolecules, Vol. 56, No. 2, 2023, pp. 697-706.
  •  
  • 15. Shin, H., Ahn, S., Kim, D., Lim, J.K., Kim, C.B., and Goh, M., “Recyclable Thermoplastic Hexagonal Boron Nitride Composites with High Thermal Conductivity,” Composites Part B: Engineering, Vol. 163, 2019, pp. 723-729.
  •  
  • 16. Shin, H., Kim, C.B., Ahn, S., Kim, D., Lim, J.K., and Goh, M., “Recyclable Polymeric Composite with High Thermal Conductivity,” Composites Research, Vol. 32, No. 6, 2019, pp. 319-326.
  •  
  • 17. Kang, D.-G., Kim, N., Park, M., Nah, C., Kim, J.S., Lee, C.-R., Kim, Y., Kim, C.B., Goh, M., and Jeong, K.-U., “Interfacial Engineering for the Synergistic Enhancement of Thermal Conductivity of Discotic Liquid Crystal Composites,” ACS Applied Materials & Interfaces, Vol. 10, No. 4, 2018, pp. 3155-3159.
  •  
  • 18. Min, S.-B., and Kim, C.B., “Manipulating Anisotropic Filler Structure in Polymer Composite for Heat Dissipating Materials: A Mini Review,” Composites Research, Vol. 35, No. 6, 2022, pp. 431-438.
  •  
  • 19. Li, H., and Zheng, W., “Enhanced Thermal Conductivity of Epoxy/alumina Composite through Multiscale-disperse Packing,” Journal of Composite Materials, Vol. 55, No. 1, 2021, pp. 17-25.
  •  
  • 20. Due, J., and Robinson, A.J., “Reliability of Thermal Interface Materials: A review,” Applied Thermal Engineering, Vol. 50, No. 1, 2013, pp. 455-463.
  •  
  • 21. Zeng, X., Wang, Z., Ye, W., Ren, L., Zeng, X., Xia, X., and Sun, R., “High-Performance Thermal Grease with the Addition of Silver Particles,” Proceeding of the 22nd International Conference on Electronic Packaging Technology (ICEPT), Sep. 2021, pp. 14-17.
  •  
  • 22. Feng, Q.-K., Liu, C., Zhang, D.-L., Song, Y.-H., Sun, K., Xu, H.-P., and Dang, Z.-M., “Particle Packing Theory Guided Multiscale Alumina Filled Epoxy Resin with Excellent Thermal and Dielectric Performances,” J. Materiomics, Vol. 8, No. 5, 2022, pp. 1058-1066.
  •  
  • 23. Liu, Z., Huang, J., Cao, M., Jiang, G., Hu, J., and Chen, Q., “Preparation of Binary Thermal Silicone Grease and Its Application in Battery Thermal Management,” Materials, Vol. 13, No. 21, 2020, pp. 4763.
  •  
  • 24. Chen, H., Wei, H., Chen, M., Meng, F., Li, H., and Li, Q., “Enhancing the Effectiveness of Silicone Thermal Grease by the Addition of Functionalized Carbon Nanotubes,” Applied Surface Science, Vol. 283, 2013, pp. 525-531.
  •  
  • 25. Han, Z., and Fina, A., “Thermal Conductivity of Carbon Nanotubes and Their Polymer Nanocomposites: A Review,” Progress in Polymer Science, Vol. 36, No. 7, pp. 914-944.
  •  
  • 26. Min, S.-B., Jo, Y., Ryu, S.Y., Lee, J., Ahn, C.-W., and Kim, C.B., “High-Yield-Stress Particle-Stabilized Emulsion for Form-Factor-Free Thermal Pastes with Thermal Conductivity, Stability, and Recyclability,” Advanced Materials Interfaces, Vol. 11, 2024, 2300860
  •  
  • 27. Chevalier, Y., and Bolzinger, M.-A., “Emulsions Stabilized with Solid Nanoparticles: Pickering Emulsions,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 439, 2013, pp. 23-34.
  •  

This Article

Correspondence to

  • Chae Bin Kim
  • * School of Chemical Engineering, Pusan National University, Busan 46241, Korea
    ** Department of Polymer Science and Engineering, Pusan National University, Busan 46241, Korea

  • E-mail: cbkim@pusan.ac.kr