Original Article
  • Erosion Simulations and Quantification of the Temperature Effect by Atomic Oxygen on Polymer Matrix
  • Jiwon Jung*, Jongkyung An*, Seunghwan Kwon*, Gun Jin Yun*†

  • * Department of Aerospace Engineering, Seoul National University, Seoul 08826, Korea

  • Atomic oxygen에 의한 고분자 기지 산화 시뮬레이션 및 온도 효과의 정량화
  • 정지원* · 안종경* · 권승환* · 윤군진*†

  • This article is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

References
  • 1. Grossman, E., and Gouzman, I., “Space Environment Effects on Polymers in Low Earth Orbit”, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Vol. 208, 2003, pp. 48-57.
  •  
  • 2. De Groh, K.K., Banks, B.A., Mccarthy, C.E., Rucker, R.N., Roberts, L.M., and Berger, L.A., “MISSE 2 PEACE Polymers Atomic Oxygen Erosion Experiment on the International Space Station”, High Performance Polymers, Vol. 20, No. 4-5, 2008, pp. 388-409.
  •  
  • 3. Rahnamoun, A., and van Duin, A.C., “Reactive Molecular Dynamics Simulation on the Disintegration of Kapton, POSS Polyimide, Amorphous Silica, and Teflon During Atomic Oxygen Impact Using the ReaxFF Reactive Force-field Method”, The Journal of Physical Chemistry A, Vol. 118, No. 15, 2014, pp. 2780-7.
  •  
  • 4. Kim, Y., and Choi, J., “Thermal Ablation Mechanism of Polyimide Reinforced with POSS under Atomic Oxygen Bombardment,” Applied Surface Science, Vol. 567, pp. 150578, 2021.
  •  
  • 5. Vashisth, A., Ashraf, C., Bakis, C.E., and Van Duin, A., “Reactive Molecular Dynamics Simulation of Accelerated Cross-linking and Disintegration of Bisphenol F/DETDA Polymer Using ReaxFF,” In American Society for Composites (ASC) 33rd Annual Technical Conference, the 18th US-Japan Conference on Composite Materials, and the ASTM D30. ASC, 2018.
  •  
  • 6. Ashraf, C., Vashisth, A., Bakis, C.E., and van Duin, A.C.T., “Reactive Molecular Dynamics Simulations of the Atomic Oxygen Impact on Epoxies with Different Chemistries”, The Journal of Physical Chemistry C, Vol. 123, No. 24, 2019, pp. 15145-15156.
  •  
  • 7. Park, T., Park, C., Jung, J., and Yun, G.J., “Investigation of Silicon Carbide Oxidation Mechanism Using ReaxFF Molecular Dynamics Simulation”, Journal of Spacecraft and Rockets, Vol. 57, No. 6, 2020, pp. 1328-1334.
  •  
  • 8. Jeon, I., Lee, S., and Yang, S., “Hyperthermal Erosion of Thermal Protection Nanocomposites under Atomic Oxygen and N2 Bombardment”, International Journal of Mechanical Sciences, Vol. 240, 2023, pp. 107910.
  •  
  • 9. Kim, Y.-J., Lin, K.-H., and Strachan, A., “Molecular Dynamics Simulations of PMMA Slabs: Role of Annealing Conditions”, Modelling and Simulation in Materials Science and Engineering, Vol. 21, No. 6, 2013, pp. 065010.
  •  
  • 10. Sun, H., Mumby, S.J., Maple, J.R., and Hagler, A.T., “An ab Initio CFF93 All-atom Force Field for Polycarbonates”, Journal of the American Chemical Society, Vol. 116, No. 7, 1994, pp. 2978-2987.
  •  
  • 11. BIOVIA, Dassault Systèmes, Materials Studio 2017 R2, San Diego: Dassault Systèmes, 2017.
  •  
  • 12. Thompson, A.P., Aktulga, H.M., Berger, R., Bolintineanu, D.S., Brown, W.M., Crozier, P.S., In't Veld, P.J., Kohlmeyer, A., Moore, S.G. and Nguyen, T.D., “LAMMPS-a flexible Simulation Tool for Particle-based Materials Modeling at the Atomic, Meso, and Continuum Scales”, Computer Physics Communications, Vol. 271, 2022, pp. 108171.
  •  
  • 13. Van Duin, A.C., Dasgupta, S., Lorant, F., and Goddard, W.A., “ReaxFF: A Reactive Force Field for Hydrocarbons”, The Journal of Physical Chemistry A, Vol. 105, No. 41, 2001, pp. 9396-9409.
  •  
  • 14. DuPont, D., “KAPTON® Summary of Properties”, EI-10142 (1/22), 2022.
  •  

This Article

Correspondence to

  • Gun Jin Yun
  • Department of Aerospace Engineering, Seoul National University, Seoul 08826, Korea

  • E-mail: gunjin.yun@snu.ac.kr