Original Article
  • Fabrication of Composite Activated Carbon Electrodes and Sodium Ion Removal by Capacitive Desalination Process
  • Eunsol Wi*, Nann Aye Mya Mya Phu*, Keunseong Kim*, Jeong Woo Yun**, Yang-il Huh*†, Mincheol Chang*†

  • * Department of Polymer Engineering, Graduate School, Chonnam National University, Gwangju 61186, Korea
    ** School of Chemical Engineering, Chonnam National University, Gwangju 61186, Korea

  • 복합 활성탄 전극의 제조 및 축전식 탈염공정 이용 나트륨 이온 제거
  • 위은솔* · Nann Aye Mya Mya Phu* · 김근성* · 윤정우** · 허양일*† · 장민철*†

  • This article is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

References
  • 1. Sharma, B.K., Water Pollution, Krishna Prakashan Media, 1994.
  •  
  • 2. Idris-Nda, A., Aliyu, H.K., and Dalil, M., “The Challenges of Domestic Wastewater Management in Nigeria: A Case Study of Minna, Central Nigeria,” International Journal of Development and Sustainability, Vol. 2, No. 2, 2013, pp. 1169-1182.
  •  
  • 3. AlSawaftah, N., Abuwatfa, W., Darwish, N., and Husseini, G., “A Comprehensive Review on Membrane Fouling: Mathematical Modelling, Prediction, Diagnosis, and Mitigation,” Water, Vol. 13, No. 9, 2021, pp. 1327.
  •  
  • 4. Do Thi, H.T., Pasztor, T., Fozer, D., Manenti, F., and Toth, A.J., “Comparison of Desalination Technologies Using Renewable Energy Sources with Life Cycle, PESTLE, and Multi-Criteria Decision Analyses,” Water, Vol. 13, No. 21, 2021, pp. 3023.
  •  
  • 5. Guo, L., Xie, Y., Sun, W., Xu, Y., and Sun, Y., “Research Progress of High-Salinity Wastewater Treatment Technology,” Water, Vol. 15, No. 4, 2023, pp. 684.
  •  
  • 6. Ryoo, M.W., and Seo, G., ‘‘Improvement in CapacitiveDeionization Function of Activated Carbon Cloth bu Titania Modification,’’ Water Research, Vol. 37, No. 7, 2003, pp. 1527-1534.
  •  
  • 7. Folaranmi, G., Tauk, M., Bechelany, M., Sistat, P., Cretin, M., and Zaviska, F., “Investigation of Fine Activated Carbon as a Viable Flow Electrode in Capacitive Deionization,” Desalination, Vol. 525, 2022, pp. 115500.
  •  
  • 8. Chai, S., Xi, J., Chen, L., He, W., Shen, J., and Gong, H., “Selective Ion Removal by Capacitive Deionization (CDI)-Based Technologies,” Processes, Vol. 10, No. 6, 2022, pp. 1075.
  •  
  • 9. Wang, S., Chen, D., Zhang, Z.X., Hu, Y., and Quan, H., “Mesopore Dominated Capacitive Deionization of N-Doped Hierarchically Porous Carbon for Water Purification,” Separation and Purification Technology, Vol. 290, 2022, pp. 120912.
  •  
  • 10. Lee, D.J., and Park, J.S., “Mesoporous Carbon Electrodes for Capacitive Deionization,” Journal of the Korean Electrochemical Society, Vol. 17, No. 1, 2014, pp. 57-64.
  •  
  • 11. Lee, J.W., Kim, H.I., Kim, H.J., Shin, H.S., Kim, J.S., Jeong, B.I., and Park, S.G., “Desalination Effects of Capacitive Deionization Process Using Activated Carbon Composite Electrodes,” Journal of the Korean Electrochemical Society, Vol. 12, No. 3, 2009, pp. 287-294.
  •  
  • 12. Seo, S.J., Jeon, H., Lee, J.K., Kim, G.Y., Park, D., Nojima, H., Lee, J.Y., and Moon, S.H., “Investigation on Removal of Hardness Ions by Capacitive Deionization (CDI) for Water Softening Applications,” Water Research, Vol. 44, No. 7, 2010, pp. 2267-2275.
  •  
  • 13. Park, B.H., and Choi, J.H., “Electrochemical Properties of Porous Carbon Electrode as a Function of Internal Electrolyte Concentration,” Journal of Korean Industrial and Engineering Chemistry, Vol. 20, No. 6, 2009, pp. 700-704.
  •  
  • 14. Cai, Y., Wang, Y., Fang, R., and Wang, J., “Flexible Structural Engineering of PPy-NiCo-LDH@Mxene for Improved Capacitive Deionization and Efficient Hard Water Softening Process,” Separation and Purification Technology, Vol. 280, 2022, pp. 119828.
  •  
  • 15. Zhang, Y., Wu, J., Zhang, S., Shang, N., Zhao, X., Alshehri, S. M., Ahamad, T., Yamauchi, Y., Xu, X., and Bando, Y., “MOF-on-MOF Nanoarchitectures for Selectively Functionalized Nitrogen-Doped Carbon-Graphitic Carbon/Carbon Nanotubes Heterostructure with High Capacitive Deionization Performance,” Nano Energy, Vol. 97, 2022, pp. 107146.
  •  
  • 16. Liu, M., He, M., Han, J., Sun, Y., Jiang, H., Li, Z., Li, Y., and Zhang, H., “Recent Advances in Capacitive Deionization: Research Progress and Application Prospects,” Sustainability, Vol. 14, No. 21, 2022, pp. 14429.
  •  
  • 17. Gamaethiralalage, J.G., Singh, K., Sahin, S., Yoon, J., Elimelech, M., Suss, M.E., Liang, P., Biesheuvel, P.M., Zornitta, R.L., and De Smet, L.C.P.M., “Recent Advances in Ion Selectivity with Capacitive Deionization,” Energy and Environmental Science, Vol. 14, 2021, pp. 1095-1120.
  •  
  • 18. Seo, S.J., Jeon, H., Lee, J.K., Kim, G.Y., Park, D., Nojima, H., Lee, J., and Moon, S.H., “Investigation on Removal of Hardness Ions by Capacitive Deionization (CDI) for Water Softening Applications,” Water Research, Vol. 44, No. 7, 2010, pp. 2267-2275.
  •  

This Article

Correspondence to

  • Yang-il Huh*, Mincheol Chang*
  • Department of Polymer Engineering, Graduate School, Chonnam National University, Gwangju 61186, Korea

  • E-mail: yihuh@jnu.ac.kr, mchang35@jnu.ac.kr