Original Article
  • Development and Self-Healing Performance of Epoxy Based on Disulfide
  • Donghyeon Lee*, Seong Baek Yang**, Jong-Hyun Kim**, Mantae Kim***†, Dong-Jun Kwon*,**†

  • * Department of Materials Engineering and Convergence Technology, Gyeongsang National University, Jinju, Korea
    ** Research Institute for Green Energy Convergence Technology, Gyeongsang National University, Jinju, Korea
    *** Aerospace Convergence Materials Center, Korea Institute of Ceramic Engineering and Technology, Jinju, Korea

  • 이황화 결합을 기반으로 한 자가치유 에폭시 개발 및 자가치유 성능 평가
  • 이동현*·양성백**·김종현**·김만태***† ·권동준*,**†

  • This article is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

References
  • 1. Pascault, J.P., and Roberto, J.J.W., Handbook of Polymer Synthesis, Characterization, and Processing, John Wiley & Sons, Inc., New York, USA, 2013.
  •  
  • 2. Yaroslavov, A.A., Arzhakov, M.S., and Khokholov, A.R., “The Life Cycle of Polymer Materials: Problems and Prospects,” Herald of the Russian Academy of Sciences, Vol. 92, 2022, pp. 18-24.
  •  
  • 3. Yang, Y., and Urban, M.W., “Self-healing Polymeric Materials,” Chemical Society Reviews, Vol. 42, 2013, pp. 7446-7467.
  •  
  • 4. Hia, I.L., Vahedi, V., and Pasbakhsh, P., “Self-Healing Polymer Composites: Prospects, Challenges, and Applications,” Polymer Reviews, Vol. 56, 2016, pp. 225-261.
  •  
  • 5. Van Zee, N.J., and Nicolaÿ, R., “Vitrimer Chemistry and Applications,” Macromolecular Engineering: From Precise Synthesis to Macroscopic Materials and Applications, 2022, pp. 1-38.
  •  
  • 6. Capelot, M., Unterlass, M.M., Tournilhac, F. and Leibler, L., “Catalytic Control of the Vitrimer Glass Transition,” ACS Macro Letters, 2012, pp. 789-792.
  •  
  • 7. Schenk, V., Labastie, K., Destarac, M., Olivier, P., and Guerre, M., “Vitrimer Composites: Current Status and Future Challenges,” Materials Advances, 2012, pp. 8012-8029.
  •  
  • 8. Hubbard, A.M., Ren, Y., Papaioannou, P., Sarvestani, A., Picu, C.R., Konkolewicz, D., Roy, A.K., Varshney, V., and Nepal, D., “Vitrimer Composites: Understanding the Role of Filler in Vitrimer Applicability,” Applied Polymer Materials, 2022, pp.6374-6385.
  •  
  • 9. Li, W., Xiao, L., Wang, Y., Chen, J., and Nie, X., “Self-healing Silicon-containing Eugenol-based Epoxy Resin Based on Disulfide Bond Exchange: Synthesis and Structure-property Relationships,” Polymer, Vol. 229, 2021, pp. 123967.
  •  
  • 10. Wang, M., Hong, G., Wang, Z., Mao, Y., Yang, J., Wu, B., Jin, L., Zhang, C., Xia, Y., and Zhang, K., “Rapid Self-healed Vitrimers via Tailored Hydroxyl Esters and Disulfide Bonds,” Polymer, Vol. 248, 2022, pp. 124801.
  •  
  • 11. Xiang, S., Zhou, L., Chen, R., Zhang, K., and Chen, M., “Interlocked Covalent Adaptable Networks and Composites Relying on Parallel Connection of Aromatic Disulfide and Aromatic Imine Cross-Links in Epoxy,” Macromolecules, Vol. 55, 2022, pp. 10276-10284.
  •  
  • 12. Chen, M., Zhou, L., Chen, Z., Zhang, Y., Xiao, P., Yu, S., Wu, Y., and Zhao, X., “Multi-functional Epoxy Vitrimers: Controllable Dynamic Properties, Multiple-stimuli Response, Crack-healing and Fracture-welding,” Composite Science and Technology, Vol. 221, 2022, pp. 109364.
  •  
  • 13. Yang, Y., Pei, Z., Zhang, X., Tao, L., Wei, Y., and Ji, Y., “Carbon Nanotube–vitrimer Composite for Facile and Efficient Photo-welding of Epoxy,” Chemical Science, Vol. 5, 2014, pp. 3486.
  •  
  • 14. Memon, H., and Yi, W., “Welding and Reprocessing of Disulfide-containing Thermoset Epoxy Resin Exhibiting Behavior Reminiscent of a Thermoplastic,” Journal of Applied Polymer Science, Vol. 137, 2020, pp. 49541.
  •  
  • 15. Zheng, H., Liu, Q., Lei, X., Chen Y., Zhang, B., and Zhang, Q., “Performance-modified Polyimine Vitrimers: Flexibility, Thermal Stability and Easy Reprocessing,” Journal of Material Science, Vol. 54, 2019, pp. 2690-2698.
  •  
  • 16. Wim, D., Johan, M.W., and Filip, E.D.P., “Vitrimers: Permanent Organic Networks with Glass-like Fluidity,” Chemical Science, 2016.
  •  
  • 17. Wang, Y., Chen, S., Chen, X., Lu, Y., Miao, M., and Zhang, D., “Controllability of Epoxy Equivalent Weight and Performance of Hyperbranched Epoxy Resins,” Composite Part B: Engineering, Vol. 160, 2019, pp. 615-625.
  •  
  • 18. Robert, E.S., Fred, N.L., and Charles, L.L., “Epoxy Resin Cure II. FTIR Analysis,” Journal of Applied Polymer Science, Vol. 29, 1984, pp. 3713-3726.
  •  
  • 19. Li, B., Zhu, G., Hao, Y., and Ren, T., “An Investigation on the Performance of Epoxy Vitrimers Based on Disulfide Bond,” Journal of Applied Polymer Science, Vol. 739, 2022, pp. 51589.
  •  
  • 20. Hu, F., John, J.L.S., Joshua, M.S., and Giuseppe, R.P., “Synthesis and Characterization of Thermosetting Furan-Based Epoxy Systems,” Macromolecules, Vol. 47, 2014, pp. 3332-3342.
  •  

This Article

Correspondence to

  • Mantae Kim***, Dong-Jun Kwon*,**
  • * Department of Materials Engineering and Convergence Technology, Gyeongsang National University, Jinju, Korea
    ** Research Institute for Green Energy Convergence Technology, Gyeongsang National University, Jinju, Korea
    *** Aerospace Convergence Materials Center, Korea Institute of Ceramic Engineering and Technology, Jinju, Korea

  • E-mail: ginggiscan@kicet.re.kr, djkwon@gnu.ac.kr