Original Article
  • Evaluation of the Influence of Pyrolysis Temperature on the Electrical Heating Properties of Si-O-C Fiber
  • Sanghun Kim*, **, Seong-Gun Bae*, **, Bum-Mo Koo*, **, Dong-Geun Shin*† , Yeong-Geun Jeong**

  • * Aerospace Convergence Materials Center, Korea Institute of Ceramic Engineering & Technology, Jinju 52851, Korea
    ** Department of Convergence, Pusan National University, Busan 46241, Korea

  • This article is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

References
  • 1. He, R., Fang, D., Wang, P., Zhang, X., and Zhang, R., “Electrical properties of ZrB2–SiC ceramics with potential for heating element applications,” Cermaic International, Vol. 40, No. 7, 2014, pp. 9549-9553.
  •  
  • 2. Kim, T., and Chung, D.D., “Carbon fiber mats as resistive heating elements,” Carbon, Vol. 41, No. 12, 2003, pp. 2436-2440.
  •  
  • 3. Cho, J.H., and Hwang, H.S., “Image processing technology for analyzing the heating state of carbon fiber surface heating element,” Journal of the Korea Academia-Industrial cooperation Society, Vol. 19, No. 2, 2018, pp. 683-688.
  •  
  • 4. Joo, Y.J., and Cho, K.Y., “Fabrication and resistance heating properties of flexible SiC fiber rope as heating elements,” Carbon, Vol. 41, No. 12, 2003, pp. 2436-2440.
  •  
  • 5. Sheehan, J.E., “Oxidation protection for carbon fiber composites,” Carbon, Vol. 27, No. 5, 1989, pp. 709-715.
  •  
  • 6. Lamouroux, F., Bertrand, S., Pailler, R., Naslain, R., and Cataldi, M., “Oxidation-resistant carbon-fiber-reinforced ceramic-matrix composites,” Composite Science Technology, Vol. 59, No. 7, 1999, pp. 1073-1085.
  •  
  • 7. Naslain, R.R., “SiC‐matrix composites: nonbrittle ceramics for thermo‐structural application,” International Journal of Applied Ceramic Technology, Vol. 2, No. 2, 2005, pp. 75-84.
  •  
  • 8. Katoh, Y., Ozawa, K., and Shih, C., “Continuous SiC fiber, CVI SiC matrix composites for nuclear applications: Properties and irradiation effects,” Journal of Nuclear Materials, Vol. 448, No. 1-3, 2014, pp. 448-476.
  •  
  • 9. Katoh, Y., Snead, L.L., and Henager Jr, C.H., “Current status and recent research achievements in SiC/SiC composites,” Journal of Nuclear Materials, Vol. 455, No. 1-3, 2014, pp. 387-397.
  •  
  • 10. Yajima, S., Hayashi, J., and Omori, M., “Continuous silicon carbide fiber of high tensile strength,” Chemistry Letter, Vol. 4, No. 9, 1975, pp. 931-934.
  •  
  • 11. Yajima, S., Okamura, K., Hayashi, J., and Omori, M., “Synthesis of continuous SiC fibers with high tensile strength,” Journal of the Amercan Ceramic Society, Vol. 59, No. 7-8, 1976, pp. 324-327.
  •  
  • 12. Yajima, S., Hayashi, J., and Omori, M., “Development of a silicon carbide fiber with high tensile strength,” Nature, Vol. 261, 1976, pp. 683-685.
  •  
  • 13. Yajima, S., Hasegawa, Y., Okamura, K., and Matsuzawa, T., “Development of high tensile strength silicon carbide fiber using an organosilicon polymer precursor,” Nature, Vol. 273, 1978, pp. 525-527.
  •  
  • 14. Schilling Jr, C.L., Wesson, J.P., and Williams, T.C., “Polycarbosilane precursors for silicon carbide,” Journal of Polymer Science: Polymer Symposia. Vol. 70, No. 1, 1983, pp. 121-128.
  •  
  • 15. Takeda, M., Sakamoto, J., Imai, Y., Ichikawa, H., and Ishikawa, T., “Properties of stoichiometric silicon carbide fiber derived from polycarbosilane,” Proceedings of the 18th Annual Conference on Composites and Advanced Ceramic Materials—A: Ceramic Engineering and Science Proceedings; 1994 Jan 1; Hoboken, NJ, USA: John Wiley & Sons, Inc. pp. 133-141.
  •  
  • 16. Mah, T., Hecht, N.L., and McCullum, D.E., “Thermal stability of SiC fibers (Nicalon¢ç),” Journal of Materials Science, Vol. 19, No. 4, 1984, pp. 1191-1201.
  •  
  • 17. Porte, L., and Sartre, A., “Evidence for a silicon oxycarbide phase in the Nicalon silicon carbide fiber,” Journal of Materials Science, Vol. 24, No. 1, 1989, pp. 271-275.
  •  
  • 18. Maniette, Y., and Oberlin, A., “TEM characterization of some crude or air heat-treated SiC Nicalon fibers,” Journal of Materials Science, Vol. 24, No. 9, 1989, pp. 3361-3370.
  •  
  • 19. Shin, D.G., Riu, D.H., Kim, Y., Kim, H.R., Park, H.S., and Kim, H.E., “Characterization of SiC fiber derived from polycarbosilanes with controlled molecular weight,” Journal of Korean Ceramic Society, Vol. 42, No. 8, 2005, pp. 593-598.
  •  
  • 20. Chollon, G., Pailler, R., Canet, R., and Delhaes, P., “Correlation between microstructure and electrical properties of SiC-based fibers derived from organosilicon precursors,” Journal of European Ceramic Society, Vol. 18, No. 6, 1998, pp. 725-733.
  •  
  • 21. Scholz, R., dos Santos Marques, F., and Riccardi, B., “Electrical conductivity of silicon carbide composites and fibers,” Journal of Nuclear Materials, Vol. 307, 2002, pp. 1098-1101.
  •  
  • 22. Wang, D.Y., Song, Y.C., and Li, Y.Q., “Effect of composition and structure on specific resistivity of SiC fibers,” Transactions of Nonferrous Metals Society of China, Vol. 22, No. 5, 2012, pp. 1133-1139.
  •  
  • 23. Mo, R., Yin, X., Li, M., Ye, F., Fan, X., and Cheng, L., “Relationship between microstructure and electromagnetic properties of SiC fibers,” Journal of American Ceramic Society, Vol. 103, No. 8, 2020, pp. 4352-4362.
  •  
  • 24. Ding, D., Zhou, W., Zhang, B., Luo, F., and Zhu, D., Complex permittivity and microwave absorbing properties of SiC fiber woven fabrics,” Journal of Materials Science, Vol. 46, No. 8, 2011, pp. 2709-2714.
  •  
  • 25. Cao, S., Wang, J., and Wang, H., “Formation mechanism of large SiC grains on SiC fiber surfaces during heat treatment,” CrystEngComm, Vol. 18, No. 20, 2016, pp. 3674-3682.
  •  
  • 26. Sasaki, Y., Nishina, Y., Sato, M., and Okamura, K., “Raman study of SiC fibers made from polycarbosilane,” Journal of Materials Science, Vol. 22, No. 2, 1987, pp. 443-448.
  •  
  • 27. Karlin, S., and Colomban, P., “Raman study of the chemical and thermal degradation of as-received and sol–gel embedded Nicalon and Hi‐Nicalon SiC fibers used in ceramic matrix composites,” Journal of Raman Spectroscopy, Vol. 28, No. 4, 1997, pp. 219-228.
  •  
  • 28. Gouadec, G., Karlin, S., and Colomban, P., “Raman extensometry study of NLM202¢ç and Hi-Nicalon¢ç SiC fibers,” Composites, Part B, Vol. 29, No. 3, 1998, pp. 251-261.
  •  
  • 29. Karlin, S., and Colomban, P., “Micro-Raman study of SiC fiber-oxide matrix reaction,” Composites, Part B, Vol. 29, No. 1, 1998, pp. 41-50.
  •  
  • 30. Tuinstra, F., and Koenig, J.L., “Raman spectrum of graphite,” The Journal of Chemical Physics, Vol. 53, No. 3, 1970, pp. 1126-1130.
  •  
  • 31. Sadezky, A., Muckenhuber, H., Grothe, H., Niessner, R., and Pöschl, U., “Raman microspectroscopy of soot and related carbonaceous materials: Spectral analysis and structural information,” Carbon, Vol. 43, No. 8, 2005, pp. 1731-1742.
  •  
  • 32. Chastain, J., and King Jr, R.C., Handbook of X-ray photoelectron spectroscopy. Perkin-Elmer Corporation, 40, 1992, 221.
  •  
  • 33. Le Coustumer, P., Monthioux, M., and Oberlin, A., “Understanding Nicalon¢ç fiber,” Journal of European Ceramic Society, Vol. 11, No. 2, 1993, pp. 95-103.
  •  

This Article

Correspondence to

  • Dong-Geun Shin
  • Aerospace Convergence Materials Center, Korea Institute of Ceramic Engineering & Technology, Jinju 52851, Korea

  • E-mail: dgshin73@kicet.re.kr