Original Article
  • Study the Estimation of the Number of Bridging Fibers of Multidirectional Glass/Epoxy Laminates Using the Acoustic Emission Signals
  • Hyun-Jun Cho*, Seung-Ah Oh*, In-Gul Kim*†

  • * Department of Aerospace Engineering, Chungnam National University

  • 음향 방출 신호를 이용한 다방향 유리/에폭시 복합재 적층판의 가교된 섬유 수 추정에 관한 연구
  • 조현준*·오승아*·김인걸*†

  • This article is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

References
  • 1. Sela, N., and Isha, O., “Interlaminar Fracture Toughness and Toughening of Laminated Composite Materials: A Review,” Composites, Vol. 20, No. 5, 1989, pp. 423-435.
  •  
  • 2. Kaute, D.A.W., Shercliff, H.R., and Ashby, M.F., “Delamination, Fibre Bridging and Toughness of Ceramic Matrix Composites,” Acta Metallurgica et Materialia, Vol. 41, No. 7, 1993, pp. 1959-1970.
  •  
  • 3. Khan, R., “Fiber Bridging in Composite Laminates: A Literature Review,” Composite Structures, Vol. 223, 2019, 111418.
  •  
  • 4. Spearing, S.M., and Evans, A.G., “The Role of Fiber Bridging in the Delamination Resistance of Fiber-reinforced Composites,” Acta Metallutgica et Materialia, Vol. 40, No. 9, 1992, pp. 2191-2199.
  •  
  • 5. Heidara-Rarani, M., Shokrieh, M.M., and Camanho, P.P., “Finite Element Modeling of Mode I Delamination Growth in Laminated DCB Specimens with R-curve Effects,” Composite Part B: Engineering, Vol. 45, 2013, pp. 897-903.
  •  
  • 6. Davila, C.G., Rose, C.A., and Camanho, P.P., “A Procedure for Superposing Linear Cohesive Laws to Represent Multiple Damage Mechanisms in the Fracture of Composites,” International Journal of Fracture, Vol. 158, 2009, pp. 211-223.
  •  
  • 7. Gong, Y., Hou, Y., Zhao, L., Li, W., Zhang, J., and Hu, N., “A Modified Mode I Cohesive Zone Model for the Delamination Growth in DCB Laminates with the Effect of Fiber Bridging,” International Journal of Mechanical Sciences, Vol. 176, 2020, 105514.
  •  
  • 8. Sorensen, B.F., Gamstedt, E.K., Ostergarrd R.C., and Goutianos, S., “Micromechanical Model of Cross-over Fibre Bridging-Prediction of Mixed Mode Bridgings Laws,” Mechanics of Materials, Vol. 40, 2008, pp. 220-234.
  •  
  • 9. Naya, F., Pappas, G., and Botsis, J., “Micromechanical Study on the Origin of Fiber Bridging under Interlaminar and Intralaminar Mode I Failure,” Composite Structures, Vol. 210, 2019, pp. 877-891.
  •  
  • 10. Yao, L., Liu, J., Lyu, Z., Alderliesten, R.C., Hao, C., Ren, C., and Guo, L., “In-situ Damage Mechanism Investigation and a Prediction Model for Delamination with Fibre Bridging in Composites,” Engineering Fracture Mechanics, Vol. 281, 2023, 109079.
  •  
  • 11. Zhao, L., Gong, Y., Zhang, J., Chen, Y., and Fei, B., “Simulation of Delamination Growth in Multidirectional Laminates under Mode I and Mixed Mode I/II Loadings Using Cohesive Elements,” Composite Structures, Vol. 116, 2014, pp. 509-522.
  •  
  • 12. Farmand-Ashtiani, E., Cugnoni, J., and Botsis, J., “Specimen Thickness Dependence of Large Scale Fiber Bridging in Mode I Interlaminar Fracture of Carbon Epoxy Composite,” International Journal of Solids and Structures, Vol. 55, 2015, pp. 58-65.
  •  
  • 13. Farmand-Ashtiani, E., Alanis, D., Cugnoni, J., and Botsis, J., “Delamination in Cross-ply Laminates: Identification of Traction-separation Relations and Cohesive Zone Modelling,” Composite Science and Technology, Vol. 119, 2015, pp. 58-65.
  •  
  • 14. Stutz, S., Cugnoni, J., and Botsis, J., “Crack-fibre Sensor Interaction and Characterization of the Bridging Tractions in Mode I Delamination,” Engineering Fracture Mechanics, Vol. 72, 2011, pp. 890-900.
  •  
  • 15. Stutz, S., Cugnoni, J., and Botsis, J., “Studies of Mode I Delamination in Monotonic and Fatigue Loading Using FBG Wavelength Multiplexing and Numerical Analysis,” Composite Science and Technology, Vol. 71, 2011, pp. 443-449.
  •  
  • 16. Davila, C.G., Rose, C.A., and Camanho, P.P., “A Procedure for Superposing Linear Cohesive Laws to Represent Multiple Damage Mechanisms in the Fracture of Composites,” International Journal of Fracture, Vol. 158, 2009, pp. 211-223.
  •  
  • 17. Daneshjoo, Z., Shokrieh, M.M., Fakoor, M., “A Micromechanical Model for Prediction of Mixed Mode I/II Delamination of Laminated Composites Considering Fiber Bridging Effects,” Theoretical and Applied Fracture Mechanics, Vol. 94, 2018, pp. 46-56.
  •  
  • 18. Bohmann, T., Schlamp, M., and Ehrlich, I., “Acoustic Emission of Material Damages in Glass Fibre-reinforced Plastics,” Composite Part B, Vol. 155, 2018, pp. 444-451.
  •  
  • 19. Chelliah, S. K., Parameswaran, P., Ramasamy, S., Vellayaraj, A., and Subramanian, “Optimization of Acoustic Emission Parameters to Discriminate Failure Modes in Glass-epoxy Composite Laminates Using Pattern Recognition,” Structural Health Monitoring, Vol. 18, No. 4, 2019, pp. 1253-1267.
  •  
  • 20. Yousefi, J., Mohamada, R., Saeedifar, M., Ahmadi, M., Hosseini-Toudeshky, H., “Delamination Characterization in Composite Laminates Using Acoustic Emission Features, Micro Visualization and Finite Element Modeling,” Journal of Composite Materials, Vol. 50, No. 22, 2016, pp. 3133-3145.
  •  
  • 21. Arumugam, V., Sajith, S., and Stanley A. J., “Acoustic Emission Characterization of Failure Modes in GFRP Laminates under Mode I Delamination,” Journal of Nondestruct Evaluation, Vol. 30, 2011, pp. 213-219.
  •  
  • 22. ASTM D-5528-13, Standard Test Method for Mode I Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composite, ASTM International, West Conshohocken, PA, 2013.
  •  

This Article

Correspondence to

  • In-Gul Kim
  • Department of Aerospace Engineering, Chungnam National University

  • E-mail: igkim@cnu.ac.kr