Review Article
  • Trends in Predicting Thermoforming-Induced Deformation ofThermoplastic Composites: A Review
  • Solmi Kim*,***, Dong-Hyeop Kim*,***, Sang-Woo Kim*,**,***†, Soo-Yong Lee***

  • * Department of Aerospace and Mechanical Engineering, Korea Aerospace University
    ** Department of Aeronautical and Astronautical Engineering, Korea Aerospace University
    *** Research Institute for Aerospace Engineering and Technology, Korea Aerospace University

  • 열가소성 복합재의 열성형 변형 예측 연구 동향
  • 김솔미*,***· 김동협*,***· 김상우*,**,***† · 이수용***

  • This article is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

References
  • 1. Awais, H., Nawab, Y., Amjad, A., Anjang, A., Akil, H.M., and Abidin, M.S.Z., “Environmental Benign Natural Fibre Reinforced Thermoplastic Composites: A Review,” Composites Part C: Open Access, Vol. 4, 2021, pp. 100082.
  •  
  • 2. Beak, Y.M., Shin, P.S., Kim, J.H., Park, H.S., Kwon, D.J., and Park, J.M., “Comparison of Mechanical and Interfacial Properties of Carbon Fiber Reinforced Recycled PET Composites with Thermoforming Temperature and Time,” Composites Research, Vol. 30, No. 3, 2017, pp. 175-180.
  •  
  • 3. Alshammari, B.A., Alsuhybani, M.S., Almushaikeh, A.M., Alotaibi, B.M., Alenad, A.M., Alqahtani, N.B., and Alharbi, A.G., “Comprehensive Review of the Properties and Modifications of Carbon Fiber-reinforced Thermoplastic Composites,” Polymers, Vol. 13, No. 15, 2021, pp. 2474.
  •  
  • 4. Lee, Y.S., Song, S.A., Kim, W.J., Kim, S.S., and Chung, Y.S., “Fabrication and Characterization of the Carbon Fiber Composite Sheets,” Composites Research, Vol. 28, No. 4, 2015, pp. 168-175.
  •  
  • 5. Zeyrek, B.Y., Aydogan, B., Dilekcan, E., and Ozturk, F., “Review of Thermoplastic Composites in Aerospace Industry,” International Journal on Engineering Technologies and Informatics, Vol. 3, 2022, pp. 1-6.
  •  
  • 6. Advani, S.G., and Hsiao, K.T. (Eds.), Manufacturing Techniques for Polymer Matrix Composites (PMCs), Elsevier, Cambridge CB22 3HJ, UK, 2012.
  •  
  • 7. Stack, R.M., and Lai, F., “Development in Thermoforming Thermoplastic Composites,” Thermoforming Quarterly, Vol. 32, 2013, pp. 48-53.
  •  
  • 8. Lee, H.S., and Yoo, Y.G., “Prediction of Film Thickness Distribution in Thermoforming,” Proceeding of the Korean Society of Precision Engineering Conference, Jeju, Korea, May 2013, pp. 957-958.
  •  
  • 9. Liu, L., Chen, J., Li, X., and Sherwood, J., “Two-dimensional Macro-mechanics Shear Models of Woven Fabrics,” Composites Part A: Applied Science and Manufacturing, Vol. 36, No. 1, 2005, pp. 105-114.
  •  
  • 10. Kim, D.H., Kim, S.W., and Lee, I., “Evaluation of Curing Process-induced Deformation in Plain Woven Composite Structures Based on Cure Kinetics Considering Various Fabric Parameters,” Composite Structures, Vol. 287, 2022, pp. 115379.
  •  
  • 11. Choi, E.S., and Kim, W.D., “Thermal Deformation of Carbon Fiber Reinforced Composite by Cure Shrinkage,” Composites Research, Vol. 31, No. 6, 2018, pp. 404-411.
  •  
  • 12. Kim, Y.S., and Kim, W.D., “Prediction of Spring-in Deformation of Carbon Fiber Reinforced Composite by Thermal Residual Stress,” Composites Research, Vol. 30, No. 6, 2017, pp. 410-415.
  •  
  • 13. Park, D.C., Park, C.W., Shin, D.H., and Kim, Y.H., “A Study on Crystallization of Thermoplastic Aromatic Polymer,” Composites Research, Vol. 31, No. 2, 2018, pp. 63-68.
  •  
  • 14. Han, P., Butterfield, J., Buchanan, S., McCool, R., Jiang, Z., Price, M., and Murphy, A., “The Prediction of Process-induced Deformation in a Thermoplastic Composite in Support of Manufacturing Simulation,” Proceeding of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, London, UK, 2013, Vol. 227, No. 10, pp. 1417-1429.
  •  
  • 15. Avrami, M., “Kinetics of Phase Change. I General Theory,” The Journal of Chemical Physics, Vol. 7, No. 12, 1939, pp. 1103-1112.
  •  
  • 16. Avrami, M., “Kinetics of Phase Change. II Transformation‐time Relations for Random Distribution of Nuclei,” The Journal of Chemical Physics, Vol. 8, No. 2, 1940, pp. 212-224.
  •  
  • 17. Avrami, M., “Granulation, Phase Change, and Microstructure Kinetics of Phase Change. III,” The Journal of Chemical Physics, Vol. 9, No. 2, 1941, pp. 177-184.
  •  
  • 18. Khanna, Y.P., and Taylor, T.J., “Comments and Recommendations on the Use of the Avrami Equation for Physico‐chemical Kinetics,” Polymer Engineering & Science, Vol. 28, No. 16, 1988, pp. 1042-1045.
  •  
  • 19. Ozawa, T., “Kinetics of Non-isothermal Crystallization,” Polymer, Vol. 12, No. 3, 1971, pp. 150-158.
  •  
  • 20. Jeziorny, A., “Parameters Characterizing the Kinetics of the Non-isothermal Crystallization of Poly(ethylene terephthalate) Determined by DSC,” Polymer, Vol. 19, No. 10, 1978, pp. 1142-1144.
  •  
  • 21. Nakamura, K., Watanabe, T., Katayama, K., and Amano, T., “Some Aspects of Nonisothermal Crystallization of Polymers. I. Relationship between Crystallization Temperature, Crystallinity, and Cooling Conditions,” Journal of Applied Polymer Science, Vol. 16, No. 5, 1972, pp. 1077-1091.
  •  
  • 22. Nakamura, K., Katayama, K., and Amano, T., “Some Aspects of Nonisothermal Crystallization of Polymers. II. Consideration of the Isokinetic Condition,” Journal of Applied Polymer Science, Vol. 17, No. 4, 1973, pp. 1031-1041.
  •  
  • 23. Nakamura, K., Watanabe, T., Amano, T., and Katayama, K., “Some Aspects of Nonisothermal Crystallization of Polymers. III. Crystallization during Melt Spinning,” Journal of Applied Polymer Science, Vol. 18, No. 2, 1974, pp. 615-623.
  •  
  • 24. Ziabicki, A., Fundamentals of Fibre Information: The Science of Fibre Spinning and Drawing, Wiley, UK, 1976.
  •  
  • 25. Lai, J.S.Y., and Findley, W.N., “Prediction of Uniaxial Stress Relaxation from Creep of Nonlinear Viscoelastic Material,” Transactions of the Society of Rheology, Vol. 12, No. 2, 1968, pp. 243-257.
  •  
  • 26. Lai, J.S.Y., and Findley, W.N., “Stress Relaxation of Nonlinear Viscoelastic Material under Uniaxial Strain,” Transactions of the Society of Rheology, Vol. 12, No. 2, 1968, pp. 259-280.
  •  
  • 27. Sun, C.T., and Chen, J.L., “A Simple Flow Rule for Characterizing Nonlinear Behavior of Fiber Composites,” Journal of Composite Materials, Vol. 23, No. 10, 1989, pp. 1009-1020.
  •  
  • 28. Yoon, K.J., and Sun, C.T., “Characterization of Elastic-viscoplastic Properties of an AS4/PEEK Thermoplastic Composite,” Journal of Composite Materials, Vol. 25, No. 10, 1991, pp. 1277-1296.
  •  
  • 29. Dörr, D., Henning, F., and Kärger, L., “Nonlinear Hyperviscoelastic Modelling of Intra-ply Deformation Behaviour in Finite Element Forming Simulation of Continuously Fibre-reinforced Thermoplastics,” Composites Part A: Applied Science and Manufacturing, Vol. 109, 2018, pp. 585-596.
  •  
  • 30. Haanappel, S.P., ten Thije, R.H., Sachs, U., Rietman, B., and Akkerman, R., “Formability Analyses of Uni-directional and Textile Reinforced Thermoplastics,” Composites Part A: Applied Science and Manufacturing, Vol. 56, 2014, pp. 80-92.
  •  
  • 31. Bergstrom, J.S., Mechanics of Solid Polymers: Theory and Computational Modeling, William Andrew, San Diego, USA, 2015.
  •  
  • 32. Gröschel, C., and Drummer, D., “The Influence of Moisture and Laminate Setup on the De-consolidation Behavior of PA6/GF Thermoplastic Matrix Composites,” International Polymer Processing, Vol. 29, No. 5, 2014, pp. 660-668.
  •  
  • 33. Xiong, H., Hamila, N., and Boisse, P., “Consolidation Modeling during Thermoforming of Thermoplastic Composite Prepregs,” Materials, Vol. 12, No. 18, 2019, pp. 2853.
  •  
  • 34. Yang, F., and Pitchumani, R., “A Fractal Cantor Set Based Description of Interlaminar Contact Evolution during Thermoplastic Composites Processing,” Journal of Materials Science, Vol. 36, 2001, pp. 4661-4671.
  •  
  • 35. Gruber, M.B., Lockwood, I.Z., Dolan, T.L., Funck, S.B., Tierney, J.J., Simacek, P., ... and Grimsley, B.W. (2012, May). Thermoplastic in situ Placement Requires Better Impregnated Tapes and Tows. In Proceedings of the 2012 SAMPE Conference and Exhibition, Baltimore, MD.
  •  
  • 36. Lee, W.I., and Springer, G.S., “A Model of the Manufacturing Process of Thermoplastic Matrix Composites,” Journal of Composite Materials, Vol. 21, No. 11, 1987, pp. 1017-1055.
  •  
  • 37. Song, Q., Liu, W., Chen, J., Zhao, D., Yi, C., Liu, R., Geng, Y., Yang, Y., Zheng, Y., and Yuan, Y., “Research on Void Dynamics during in situ Consolidation of CF/high-performance Thermoplastic Composite,” Polymers, Vol. 14, No. 7, 2022, pp. 1401.
  •  
  • 38. Campbell Jr, F.C., Manufacturing Technology for Aerospace Structural Materials, Elsevier, Amsterdam, Netherlands, 2011.
  •  
  • 39. McCool, R., Murphy, A., Wilson, R., Jiang, Z., Price, M., Butterfield, J., and Hornsby, P., “Thermoforming Carbon Fibre-reinforced Thermoplastic Composites,” Proceeding of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, UK, Vol. 226, No. 2, Feb. 2012, pp. 91-102.
  •  
  • 40. Lee, B.E., Hyun, D.K., and Shin, D.H., “A Review of Forming Process for High Performance Thermoplastic Composites in Aerospace Applications,” Transactions of Materials Processing, Vol. 27, No. 1, 2018, pp. 60-65.
  •  
  • 41. Lessard, H., Lebrun, G., Benkaddour, A., and Pham, X.T., “Influence of Process Parameters on the Thermostamping of a [0/90] 12 carbon/polyether Ether Ketone Laminate,” Composites Part A: Applied Science and Manufacturing, Vol. 70, 2015, pp. 59-68.
  •  
  • 42. Christie, G., Richard. Numerical Modelling of Fibre-reinforced Thermoplastic Sheet Forming. 1997. PhD Thesis. ResearchSpace@ Auckland.
  •  
  • 43. Christie, G.R., Numerical Modelling of Fibre-reinforced Thermoplastic Sheet Forming, Ph.D Thesis, ResearchSpace@ Auckland, 1997.
  •  
  • 44. Jamin, T., Dubé, M., and Lebel, L.L., “Stamp Forming of Thermoplastic Composites: Effect of Radius and Thickness on Part Quality,” Proceeding of In ECCM16-16TH European Conference on Composite Materials, Seville, Spain, June 2014, pp. 22-26.
  •  
  • 45. Ryu, J.C., Lee, C.J., Jang, J.S., and Ko, D.C., “Spring-In Prediction of CFRP Part Using Coupled Analysis of Forming and Cooling Processes in Stamping,” Materials, Vol. 17, No. 5, 2024, pp. 1115.
  •  
  • 46. Tatsuno, D., Yoneyama, T., Kawamoto, K., and Okamoto, M., “Hot Press Forming of Thermoplastic CFRP Sheets,” Procedia Manufacturing, Vol. 15, 2018, pp. 1730-1737.
  •  
  • 47. Fortin, G.Y., Process-induced Shape Distortions in Aerospace Thermoplastic Composites, Ph.D Thesis, University of British Columbia, 2016.
  •  
  • 48. Brauner, C., Peters, C., Brandwein, F., and Herrmann, A.S., “Analysis of Process-induced Deformations in Thermoplastic Composite Materials,” Journal of Composite Materials, Vol. 48, No. 22, 2014, pp. 2779-2791.
  •  
  • 49. Wijskamp, S., Shape Distortions in Composites Forming, Ph.D Thesis, University of Twente, Netherlands, 2005.
  •  
  • 50. Van Drongelen, M., Van Erp, T.B., and Peters, G.W.M., “Quantification of Non-isothermal, Multi-phase Crystallization of Isotactic Polypropylene: The Influence of Cooling Rate and Pressure,” Polymer, Vol. 53, No. 21, 2012, pp. 4758-4769.
  •  
  • 51. Doerr, D., Joppich, T., Kugele, D., Henning, F., and Kaerger, L., “A Coupled Thermomechanical Approach for Finite Element Forming Simulation of Continuously Fiber-reinforced Semi-crystalline Thermoplastics,” Composites Part A: Applied Science and Manufacturing, Vol. 125, 2019, pp. 105508.
  •  
  • 52. Brooks, R.A., Wang, H., Ding, Z., Xu, J., Song, Q., Liu, H., Dear, J.P., and Li, N., “A Review on Stamp Forming of Continuous Fibre-reinforced Thermoplastics,” International Journal of Lightweight Materials and Manufacture, Vol. 5, No. 3, 2022, pp. 411-430.
  •  
  • 53. Ten Thije, R.H.W., and Akkerman, R., “Finite Element Simulations of Laminated Composites Forming Processes,” International Journal of Material Forming, Vol. 3, 2010, pp. 715-718.
  •  
  • 54. Ten Thije, R.H.W., Akkerman, R., and Huétink, J., “Large Deformation Simulation of Anisotropic Material Using an Updated Lagrangian Finite Element Method,” Computer Methods in Applied Mechanics and Engineering, Vol. 196, No. 33-34, 2007, pp. 3141-3150.
  •  
  • 55. Bean, P., Lopez-Anido, R.A., and Vel, S., “Integration of Material Characterization, Thermoforming Simulation, and As-formed Structural Analysis for Thermoplastic Composites,” Polymers, Vol. 14, No. 9, 2022, pp. 1877.
  •  
  • 56. Parambil, N.K., Chen, B.R., Deitzel, J.M., and Gillespie Jr, J.W., “A Methodology for Predicting Processing Induced Thermal Residual Stress in Thermoplastic Composite at the Microscale,” Composites Part B: Engineering, Vol. 231, 2022, pp. 109562.
  •  
  • 57. Vedernikov, A., Safonov, A., Tucci, F., Carlone, P., and Akhatov, I., “Modeling Spring-in of l-shaped Structural Profiles Pultruded at Different Pulling Speeds,” Polymers, Vol. 13, No. 16, 2021, pp. 2748.
  •  
  • 58. Barocio, E., Hicks, J., Kim, G., Favaloro, A., Ghosh, G., Goodsell, J., and Pipes, R.B., “Validation of Shape Change Predictions for Stamp Forming of Carbon Fiber Thermoplastic Composite Laminates,” Composites Part B: Engineering, Vol. 275, 2024, pp. 111325.
  •  
  • 59. Pi Savall, B., Mielke, A., and Ricken, T., “Data‐Driven Stress Prediction for Thermoplastic Materials,” PAMM, Vol. 21, No. 1, 2021, pp. e202100225.
  •  
  • 60. Nardi, D., and Sinke, J., “Design Analysis for Thermoforming of Thermoplastic Composites: Prediction and Machine Learning-based Optimization,” Composites Part C: Open Access, Vol. 5, 2021, pp. 100126.
  •  
  • 61. Tan, L.B., and Nhat, N.D.P., “Prediction and Optimization of Process Parameters for Composite Thermoforming Using a Machine Learning Approach,” Polymers, Vol. 14, No. 14, 2022, pp. 2838.
  •  
  • 62. Lin, Y., and Guan, Z., “The Use of Machine Learning for the Prediction of the Uniformity of the Degree of Cure of a Composite in an Autoclave,” Aerospace, Vol. 8, No. 5, 2021, pp. 130.
  •  

This Article

Correspondence to

  • Sang-Woo Kim
  • * Department of Aerospace and Mechanical Engineering, Korea Aerospace University
    ** Department of Aeronautical and Astronautical Engineering, Korea Aerospace University
    *** Research Institute for Aerospace Engineering and Technology, Korea Aerospace University

  • E-mail: swkim@kau.ac.kr