Review Article
  • Recent Advances in Electric Stimulus-Responsive Soft Actuators
  • Seong-Jun Jo*, Gwon Min Kim*, Jaehwan Kim*†

  • * School of Mechanical System Engineering, Kumoh National Institute of Technology

  • 전기자극 감응형 소프트 액추에이터의 최신 동향
  • 조성준*·김권민*·김재환*†

  • This article is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

References
  • 1. Shahinpoor, M. and Kim, K.J., “Ionic polymer-metal composites: I. Fundamentals,” Smart Materials and Structures, Vol. 10, No. 4, 2001, pp. 819.
  •  
  • 2. Kim, K.J. and Shahinpoor, M., “Ionic polymer-metal composites: II. Manufacturing techniques,” Smart Materials and Structures, Vol. 12, No. 1, 2003, pp. 65.
  •  
  • 3. Fukushima, T., Asaka, K., Kosaka, A. and Aida, T., “Fully plastic actuator through layer‐by‐layer casting with ionic‐liquid‐based bucky gel,” Angewandte Chemie, Vol. 117, No. 16, 2005, pp. 2462-2465.
  •  
  • 4. Kotal, M., Kim, J., Kim, K.J. and Oh, I.K., “Sulfur and nitrogen co-doped graphene electrodes for high-performance ionic artificial muscles,” Advanced Materials (Deerfield Beach, Fla.), Vol. 28, No. 8, 2016, pp. 1610-1615.
  •  
  • 5. Roy, S., Kim, J., Kotal, M., Tabassian, R., Kim, K.J. and Oh, I.K., “Collectively exhaustive electrodes based on covalent organic framework and antagonistic Co‐doping for electroactive ionic artificial muscles,” Advanced Functional Materials, Vol. 29, No. 17, 2019, pp. 1900161.
  •  
  • 6. Umrao, S., Tabassian, R., Kim, J., Nguyen, V.H., Zhou, Q., Nam, S. and Oh, I.K., “MXene artificial muscles based on ionically cross-linked Ti3C2Tx electrode for kinetic soft robotics,” Science Robotics, Vol. 4, No. 33, 2019, pp. eaaw7797.
  •  
  • 7. Liu, L., Wang, C., Wu, Z. and Xing, Y., “Ultralow-voltage-drivable artificial muscles based on a 3D structure MXene-PEDOT: PSS/AgNWs electrode,” ACS Applied Materials & Interfaces, Vol. 14, No. 16, 2022, pp. 18150-18158.
  •  
  • 8. Garai, M., Mahato, M., Nam, S., Kim, E., Seo, D., Lee, Y., Nguyen, V.H., Oh, S., Sambyal, P., Yoo, H., Taseer, A.K., Syed, S.A., Han, H., Ahn, C.W., Kim, J. and Oh. I.K., “Metal organic framework‐MXene nanoarchitecture for fast responsive and ultra‐stable electro‐ionic artificial muscles,” Advanced Functional Materials, Vol. 33, No. 10, 2023, pp. 2212252.
  •  
  • 9. Mahato, M., Hwang, W., Tabassian, R., Oh, S., Nguyen, V.H., Nam, S., Kim, J., Yoo, H., Taseer, A.K., Lee, M., Zhang, H., Song, T.E. and Oh, I.K., “A dual‐responsive magnetoactive and electro-ionic soft actuator derived from a nickel‐based metal-organic framework,” Advanced Materials, Vol. 34, No. 35, 2022, pp. 2203613.
  •  
  • 10. Raza, U., Oh, S., Tabassian, R., Mahato, M. and Oh, I.K., “Micro-structured porous electrolytes for highly responsive ionic soft actuators,” Sensors and Actuators B: Chemical, Vol. 352, 2022, pp. 131006.
  •  
  • 11. Kim, O., Shin, T.J. and Park, M.J., “Fast low-voltage electroactive actuators using nanostructured polymer electrolytes,” Nature communications, Vol. 4, No. 1, 2013, pp. 2208.
  •  
  • 12. Nguyen, V.H., Kim, J., Tabassian, R., Kotal, M., Jun, K., Oh, J., Son, J., Manzoor, M.T., Kim, K.J. and Oh, I.K., “Electroactive Artificial Muscles Based on Functionally Antagonistic Core-Shell Polymer Electrolyte Derived from PS‐b‐PSS Block Copolymer,” Advanced Science, Vol. 6, No. 5, 2019, pp. 1801196.
  •  
  • 13. Nguyen, V.H., Oh, S., Mahato, M., Tabassian, R., Yoo, H., Lee, S., Garai, M., Kim, K.J. and Oh, I.K., “Functionally antagonistic polyelectrolyte for electro-ionic soft actuator,” Nature Communications, Vol. 15, No. 1, 2024, pp. 435.
  •  
  • 14. Wang, F., Huang, D., Li, Q., Wu, Y., Yan, B., Wu, Z. and Park, S., “Highly electro-responsive ionic soft actuator based on graphene nanoplatelets-mediated functional carboxylated cellulose nanofibers,” Composites Science and Technology, Vol. 231, 2023, pp. 109845.
  •  
  • 15. Tabassian, R., Nguyen, V.H., Umrao, S., Mahato, M., Kim, J., Porfiri, M. and Oh, I.K., “Graphene Mesh for Self‐Sensing Ionic Soft Actuator Inspired from Mechanoreceptors in Human Body,” Advanced Science, Vol. 6, No. 23, 2019, pp. 1901711.
  •  
  • 16. Zhu, Z., Cheng, S., Han, J., Yan, S., Fan, P., Hu, Q. and Tang, Z., “Electrically Reconfigurable Metasurfaces for Frequency Selective Transmission via IPMC Kirigami,” Advanced Materials Technologies, Vol. 9, No. 7 2024, pp. 2301879.
  •  
  • 17. Otero, T.F., Angulo, E., Rodriguez, J. and Santamaria, C., “Electrochemomechanical properties from a bilayer: polypyrrole/non-conducting and flexible material—artificial muscle,” Journal of Electroanalytical Chemistry, Vol. 341, No. 1-2, 1992, pp. 369-375.
  •  
  • 18. Pei, Q. and Inganäs, O., “Electrochemical muscles: bending strips built from conjugated polymers,” Synthetic Metals, Vol. 57, No. 1, 1993, pp. 3718-3723.
  •  
  • 19. Torop, J., Aabloo, A. and Jager, E.W., “Novel actuators based on polypyrrole/carbide-derived carbon hybrid materials,” Carbon, Vol. 80, 2014, pp. 387-395.
  •  
  • 20. Otero, T.F., Schumacher, J. and Pascual, V.H., “Construction and coulodynamic characterization of PPy-DBS-MWCNT/tape bilayer artificial muscles,” RSC Advances, Vol. 6, No. 72, 2016, pp. 68538-68544.
  •  
  • 21. Pang, D., Wang, X., Liu, C., Xu, H., Chen, G., Du, F., Dall'Agnese, Y. and Gao, Y., “A synergistic Ti3C2Tx/PPy bilayer electrochemical actuator,” Applied Surface Science, Vol. 583, 2022, pp. 152403.
  •  
  • 22. Ting, M.S., Narasimhan, B.N., Travas-Sejdic, J. and Malmström, J., “Soft conducting polymer polypyrrole actuation based on poly(N-isopropylacrylamide) hydrogels,” Sensors and Actuators B: Chemical, Vol. 343, 2021, pp. 130167.
  •  
  • 23. Chen, X., Xing, K. and Inganäs, O., “Electrochemically induced volume changes in poly(3, 4-ethylenedioxythiophene),” Chemistry of Materials, Vol. 8, No. 10, 1996, pp. 2439-2443.
  •  
  • 24. Põldsalu, I., Rohtlaid, K., Nguyen, T.M.G., Plesse, C., Vidal, F., Khorram, M.S., Peikolainen, A., Tamm, T. and Kiefer, R., “Thin ink-jet printed trilayer actuators composed of PEDOT: PSS on interpenetrating polymer networks,” Sensors and Actuators B: Chemical, Vol. 258, 2018, pp. 1072-1079.
  •  
  • 25. Rohtlaid, K., Nguyen, G.T., Soyer, C., Cattan, E., Vidal, F. and Plesse, C., “Poly(3, 4‐ethylenedioxythiophene): Poly(styrene sulfonate)/polyethylene oxide electrodes with improved electrical and electrochemical properties for soft microactuators and microsensors,” Advanced Electronic Materials, Vol. 5, No. 4, 2019, pp. 1800948.
  •  
  • 26. Taccola, S., Greco, F., Mazzolai, B., Mattoli, V. and Jager, E., “Thin film free-standing PEDOT: PSS/SU8 bilayer microactuators,” Journal of Micromechanics and Microengineering, Vol. 23, No. 11, 2013, pp. 117004.
  •  
  • 27. Zhang, P., Zhu, B., Luo, Y. and Travas‐Sejdic, J., “Micropipette‐Based Fabrication of Free‐Standing, Conducting Polymer Bilayer Actuators,” Advanced Materials Technologies, Vol. 7, No. 12, 2022, pp. 2200686.
  •  
  • 28. Tyagi, M., Fathollahzadeh, M., Martinez, J.G., Mak, W.C., Filippini, D. and Jager, E.W., “Radially actuating conducting polymer microactuators as gates for dynamic microparticle sieve based on printed microfluidics,” Sensors and Actuators B: Chemical, Vol. 382, 2023, pp. 133448.
  •  
  • 29. Temmer, R., Maziz, A., Plesse, C., Aabloo, A., Vidal, F. and Tamm, T., “In search of better electroactive polymer actuator materials: PPy versus PEDOT versus PEDOT-PPy composites,” Smart Materials and Structures, Vol. 22, No. 10, 2013, pp. 104006.
  •  
  • 30. Gaihre, B., Ashraf, S., Spinks, G.M., Innis, P.C. and Wallace, G.G., “Comparative displacement study of bilayer actuators comprising of conducting polymers, fabricated from polypyrrole, poly(3, 4-ethylenedioxythiophene) or poly(3, 4-propylenedioxythiophene),” Sensors and Actuators A: Physical, Vol. 193, 2013, pp. 48-53.
  •  
  • 31. Pelrine, R., Kornbluh, R., Pei, Q. and Joseph, J., “High-speed electrically actuated elastomers with strain greater than 100%,” Science, Vol. 287, No. 5454, 2000, pp. 836-839.
  •  
  • 32. Lee, H., Jung, K., Han, M. and Chang, S., “A Study on the Fabrication of Flexible Composite Electrodes and Its Bonding Characteristics According to Surface Roughness,” Composites Research, Vol. 27, No. 6, 2014, pp. 242-247.
  •  
  • 33. Pelrine, R., Kornbluh, R., Joseph, J., Heydt, R., Pei, Q. and Chiba, S., “High-field deformation of elastomeric dielectrics for actuators,” Materials Science and Engineering: C, Vol. 11, No. 2, 2000, pp. 89-100.
  •  
  • 34. Ha, S.M., Yuan, W., Pei, Q., Pelrine, R. and Stanford, S., “Interpenetrating networks of elastomers exhibiting 300% electrically-induced area strain,” Smart Materials and Structures, Vol. 16, No. 2, 2007, pp. S280.
  •  
  • 35. Yin, L., Zhao, Y., Zhu, J., Yang, M., Zhao, H., Pei, J., Zhong, S. and Dang, Z., “Soft, tough, and fast polyacrylate dielectric elastomer for non-magnetic motor,” Nature communications, Vol. 12, No. 1, 2021, pp. 4517.
  •  
  • 36. Shi, Y., Askounis, E., Plamthottam, R., Libby, T., Peng, Z., Youssef, K., Pu, J., Pelrine, R. and Pei, Q., “A processable, high-performance dielectric elastomer and multilayering process,” Science, Vol. 377, No. 6602, 2022, pp. 228-232.
  •  
  • 37. Pu, J., Meng, Y., Xie, Z., Peng, Z., Wu, J., Shi, Y., Plamthottam, R., Yang, W. and Pei, Q., “A unimorph nanocomposite dielectric elastomer for large out-of-plane actuation,” Science Advances, Vol. 8, No. 9, 2022, pp. eabm6200.
  •  
  • 38. Zhang, Y., Ellingford, C., Zhang, R., Roscow, J., Hopkins, M., Keogh, P., McNally, T., Bowen, C. and Wan, C., “Electrical and mechanical self‐healing in high‐performance dielectric elastomer actuator materials,” Advanced Functional Materials, Vol. 29, No. 15, 2019, pp. 1808431.
  •  
  • 39. Aksoy, B. and Shea, H., “Reconfigurable and Latchable Shape‐Morphing Dielectric Elastomers Based on Local Stiffness Modulation,” Advanced Functional Materials, Vol. 30, No. 27, 2020, pp. 2001597.
  •  
  • 40. Chortos, A., Hajiesmaili, E., Morales, J., Clarke, D.R. and Lewis, J.A., “3D printing of interdigitated dielectric elastomer actuators,” Advanced Functional Materials, Vol. 30, No. 1, 2020, pp. 1907375.
  •  
  • 41. Hwang, T., Kwon, H., Oh, J., Hong, J., Hong, S., Lee, Y., Ryeol Choi, H., Jin Kim, K., Hossain Bhuiya, M. and Nam, J., “Transparent actuator made with few layer graphene electrode and dielectric elastomer, for variable focus lens,” Applied Physics Letters, Vol. 103, No. 2, 2013,
  •  
  • 42. Keplinger, C., Sun, J., Foo, C.C., Rothemund, P., Whitesides, G.M. and Suo, Z., “Stretchable, transparent, ionic conductors,” Science, Vol. 341, No. 6149, 2013, pp. 984-987.
  •  
  • 43. Jordi, C., Michel, S., Kovacs, G. and Ermanni, P., “Scaling of planar dielectric elastomer actuators in an agonist-antagonist configuration,” Sensors and Actuators A: Physical, Vol. 161, No. 1-2, 2010, pp. 182-190.
  •  
  • 44. Murray, C., McCoul, D., Sollier, E., Ruggiero, T., Niu, X., Pei, Q. and Carlo, D.D., “Electro-adaptive microfluidics for active tuning of channel geometry using polymer actuators,” Microfluidics and nanofluidics, Vol. 14, 2013, pp. 345-358.
  •  
  • 45. Loverich, J.J., Kanno, I. and Kotera, H., “Concepts for a new class of all-polymer micropumps,” Lab on a Chip, Vol. 6, No. 9, 2006, pp. 1147-1154.
  •  
  • 46. Pei, Q., Rosenthal, M., Stanford, S., Prahlad, H. and Pelrine, R., “Multiple-degrees-of-freedom electroelastomer roll actuators,” Smart Materials and Structures, Vol. 13, No. 5, 2004, pp. N86.
  •  
  • 47. Son, J., Lee, S., Bae, G.Y., Lee, G., Duduta, M. and Cho, K., “Skin‐Mountable Vibrotactile Stimulator Based on Laterally Multilayered Dielectric Elastomer Actuators,” Advanced Functional Materials, Vol. 33, No. 23, 2023, pp. 2213589.
  •  
  • 48. Kim, D. and Chang, S., “Design of an actuator using electro-active polymer (EAP) actuator with composite electrodes,” Composites Research, Vol. 32, No. 5, 2019, pp. 211-215.
  •  
  • 49. Shintake, J., Rosset, S., Schubert, B.E., Floreano, D. and Shea, H., “Versatile soft grippers with intrinsic electroadhesion based on multifunctional polymer actuators,” Advanced Materials, Vol. 28, No. 2, 2016, pp. 231-238.
  •  
  • 50. Ji, X., Liu, X., Cacucciolo, V., Civet, Y., El Haitami, A., Cantin, S., Perriard, Y. and Shea, H., “Untethered feel‐through haptics using 18‐µm thick dielectric elastomer actuators,” Advanced Functional Materials, Vol. 31, No. 39, 2021, pp. 2006639.
  •  
  • 51. Zhu, Y., Liu, N., Chen, Z., He, H., Wang, Z., Gu, Z., Chen, Y., Mao, J., Luo, Y. and He, Y., “3D-printed high-frequency dielectric elastomer actuator toward insect-scale ultrafast soft robot,” ACS Materials Letters, Vol. 5, No. 3, 2023, pp. 704-714.
  •  
  • 52. Kawai, H., “The piezoelectricity of poly(vinylidene fluoride),” Japanese Journal of Applied Physics, Vol. 8, No. 7, 1969, pp. 975.
  •  
  • 53. Zhang, Q.M., Bharti, V. and Zhao, X., “Giant electrostriction and relaxor ferroelectric behavior in electron-irradiated poly (vinylidene fluoride-trifluoroethylene) copolymer,” Science, Vol. 280, No. 5372, 1998, pp. 2101-2104.
  •  
  • 54. Pabst, O., Perelaer, J., Beckert, E., Schubert, U.S., Eberhardt, R. and Tünnermann, A., “All inkjet-printed piezoelectric polymer actuators: Characterization and applications for micropumps in lab-on-a-chip systems,” Organic Electronics, Vol. 14, No. 12, 2013, pp. 3423-3429.
  •  
  • 55. Chen, X., Qin, H., Qian, X., Zhu, W., Li, B., Zhang, B., Lu, W., Li, R., Zhang, S. and Zhu, L., “Relaxor ferroelectric polymer exhibits ultrahigh electromechanical coupling at low electric field,” Science, Vol. 375, No. 6587, 2022, pp. 1418-1422.
  •  
  • 56. Shouji, Y., Sekine, T., Ito, K., Ito, N., Yasuda, T., Wang, Y., Takeda, Y., Kumaki, D., Santos, F.D.D. and Miyabo, A., “Fast Response, High‐Power Tunable Ultrathin Soft Actuator by Functional Piezoelectric Material Composite for Haptic Device Application,” Advanced Electronic Materials, 2023, pp. 2201040.
  •  
  • 57. Acome, E., Mitchell, S.K., Morrissey, T.G., Emmett, M.B., Benjamin, C., King, M., Radakovitz, M. and Keplinger, C., “Hydraulically amplified self-healing electrostatic actuators with muscle-like performance,” Science, Vol. 359, No. 6371, 2018, pp. 61-65.
  •  
  • 58. Kellaris, N., Gopaluni Venkata, V., Smith, G.M., Mitchell, S.K. and Keplinger, C., “Peano-HASEL actuators: Muscle-mimetic, electrohydraulic transducers that linearly contract on activation,” Science Robotics, Vol. 3, No. 14, 2018, pp. eaar3276.
  •  
  • 59. Kellaris, N., Venkata, V.G., Rothemund, P. and Keplinger, C., “An analytical model for the design of Peano-HASEL actuators with drastically improved performance,” Extreme Mechanics Letters, Vol. 29, 2019, pp. 100449.
  •  
  • 60. Wang, X., Mitchell, S.K., Rumley, E.H., Rothemund, P. and Keplinger, C., “High‐strain peano‐HASEL actuators,” Advanced Functional Materials, Vol. 30, No. 7, 2020, pp. 1908821.
  •  
  • 61. Park, T., Kim, K., Oh, S. and Cha, Y., “Electrohydraulic actuator for a soft gripper,” Soft Robotics, Vol. 7, No. 1, 2020, pp. 68-75.
  •  
  • 62. Rumley, E.H., Preninger, D., Shagan Shomron, A., Rothemund, P., Hartmann, F., Baumgartner, M., Kellaris, N., Stojanovic, A., Yoder, Z. and Karrer, B., “Biodegradable electrohydraulic actuators for sustainable soft robots,” Science Advances, Vol. 9, No. 12, 2023, pp. eadf5551.
  •  
  • 63. Kanno, R., Caruso, F., Takai, K., Piskarev, Y., Cacucciolo, V. and Shintake, J., “Biodegradable electrohydraulic soft actuators,” Advanced Intelligent Systems, Vol. 5, No. 9, 2023, pp. 2200239.
  •  
  • 64. Yoder, Z., Macari, D., Kleinwaks, G., Schmidt, I., Acome, E. and Keplinger, C., “A soft, fast and versatile electrohydraulic gripper with capacitive object size detection,” Advanced Functional Materials, Vol. 33, No. 3, 2023, pp. 2209080.
  •  
  • 65. Xiong, Q., Zhou, X., Li, D., Ambrose, J.W. and Yeow, R.C., “An Amphibious Fully‐Soft Centimeter‐Scale Miniature Crawling Robot Powered by Electrohydraulic Fluid Kinetic Energy,” Advanced Science, Vol. 11, No. 14, 2024, pp. 2308033.
  •  
  • 66. Leroy, E., Hinchet, R. and Shea, H., “Multimode hydraulically amplified electrostatic actuators for wearable haptics,” Advanced Materials, Vol. 32, No. 36, 2020, pp. 2002564.
  •  
  • 67. Johnson, B.K., Naris, M., Sundaram, V., Volchko, A., Ly, K., Mitchell, S.K., Acome, E., Kellaris, N., Keplinger, C. and Correll, N., “A multifunctional soft robotic shape display with high-speed actuation, sensing, and control,” Nature Communications, Vol. 14, No. 1, 2023, pp. 4516.
  •  
  • 68. Wang, T., Joo, H., Song, S., Hu, W., Keplinger, C. and Sitti, M., “A versatile jellyfish-like robotic platform for effective underwater propulsion and manipulation,” Science Advances, Vol. 9, No. 15, 2023, pp. eadg0292.
  •  
  • 69. Mitchell, S.K., Wang, X., Acome, E., Martin, T., Ly, K., Kellaris, N., Venkata, V.G. and Keplinger, C., “An easy‐to‐implement toolkit to create versatile and high‐performance HASEL actuators for untethered soft robots," Advanced Science, Vol. 6, No. 14, 2019, pp. 1900178.
  •  
  • 70. Gravert, S., Varini, E., Kazemipour, A., Michelis, M.Y., Buchner, T., Hinchet, R. and Katzschmann, R.K., “Low-voltage electrohydraulic actuators for untethered robotics,” Science Advances, Vol. 10, No. 1, 2024, pp. eadi9319.
  •  

This Article

Correspondence to

  • Jaehwan Kim
  • School of Mechanical System Engineering, Kumoh National Institute of Technology

  • E-mail: kimjh8729@kumoh.ac.kr