Special Issue
  • Mechanical, Electrical and Thermal Properties of Polymer Composites Containing Long Carbon Fibers and Multi-walled Carbon Nanotubes
  • Min Su Kim*,#, Ki Hoon Kim**,#, Bo-kyung Choi***, Jong Hyun Park***,††, Seong Yun Kim*, **,†

  • * Department of Organic Materials and Textile Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea
    ** Department of Carbon Composites Convergence Materials Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea
    *** Carbon and Hydrogen Research Association, Jeonju, Republic of Korea

  • 탄소장섬유와 다중벽 탄소나노튜브가 혼입된 고분자 복합재료의 기계적, 전기적 및 열적 특성
  • 김민수*,# · 김기훈**,# · 최보경*** · 박종현***,†† · 김성륜*, **,†

  • This article is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

References
  • 1. Kim, S.O., Kim, S.Y., and Kim, M., “Improving the Electrical Performance of a Carbon Fiber Reinforced Polymer Bipolar Plate Using a Resin Squeeze-out Preprocess,” Composites Communications, Vol. 32, 2020, 101156.
  •  
  • 2. Jang, J.U., Youn, S.J., Kim, S.Y., and Park, M., “Effect of Polypropylene-grafted-maleic Anhydride Content on Physical Properties of Carbon Fiber Reinforced Polypropylene Composites,” Functional Composites and Structures, Vol. 2, 2020, 045008.
  •  
  • 3. Kim, K.H., Jang, J.U., Yoo, G.Y., Kim, S.H., Oh, M.J., and Kim, S.Y., “Enhanced Electrical and Thermal Conductivities of Polymer Composites with a Segregated Network of Graphene Nanoplatelets,” Materials, Vol. 16, No. 15, 2023, 5329.
  •  
  • 4. Kim, S.Y., Baek, S.J., and Youn, J.R., “New Hybrid Method for Simultaneous Improvement of Tensile and Impact Properties of Carbon Fiber Reinforced Composites,” Carbon, Vol. 49, No. 15, 2011, pp. 5329-5338.
  •  
  • 5. Jang, J.U., Cha, J.E., Lee, S.H., Kim, J., Yang, B., Kim, S.Y., and Kim, S.H., “Enhanced Electrical and Electromagnetic Interference Shielding Properties of Uniformly Dispersed Carbon Nanotubes Filled Composite Films via Solvent-free Process Using Ring-opening Polymerization of Cyclic Butylene Terephthalate,” Polymer, Vol. 186, 2020, 122030.
  •  
  • 6. Jang, J.U., Lee, H.S., Kim, J.W., Kim, S.Y., Kim, S.H., Hwang, I., Kang, B.J., and Kang, M.K., “Facile and Cost-effective Strategy for Fabrication of Polyamide 6 Wrapped Multi-walled Carbon Nanotube via Anionic Melt Polymerization of ε-caprolactam,” Chemical Engineering Journal, Vol. 373, 2019, pp. 251-258.
  •  
  • 7. Kim, H.S., Kim, J.H., Yang, C.M., and Kim, S.Y., “Synergistic Enhancement of Thermal Conductivity in Composites Filled with Expanded Graphite and Multi-walled Carbon Nanotube Fillers via Melt-compounding Based on Polymerizable Low-viscosity Oligomer Matrix,” Journal of Alloys and Compounds, Vol. 690, 2017, pp. 274-280.
  •  
  • 8. Noh, Y.J., Pak, S.Y., Hwang, S.H., Hwang, J.Y., Kim, S.Y., and Youn, J.R., “Enhanced Dispersion for Electrical Percolation Behavior of Multi-walled Carbon Nanotubes in Polymer Nanocomposites Using Simple Powder Mixing and in situ Polymerization with Surface Treatment of the Fillers,” Composite Science and Technology, Vol. 89, 2013, pp. 29-37.
  •  
  • 9. Pak, S.Y., Kim, H.M., Kim, S.Y., and Youn, J.R., “Synergistic Improvement of Thermal Conductivity of Thermoplastic Composites with Mixed Boron Nitride and Multi-walled Carbon Nanotube Fillers,” Carbon, Vol. 50, No. 13, 2012, pp. 4830-4838.
  •  
  • 10. Jang, J.U., Park, H.C., Lee, H.S., and Khil, M.S., “Electrically and Thermally Conductive Carbon Fibre Fabric Reinforced Polymer Composites Based on Nanocarbons and an In-situ Polymerizable Cyclic Oligoester,” Scientific Reports, Vol. 8, 2018, 7659.
  •  
  • 11. Kang, H., Kim, K.H., Kim, G.S., Lee, H., Jang, J.U., and Kim, S.Y., “Synergistic Enhancement in Electrical Conductivity of Polymer Composites Simultaneously Filled with Multi-walled Carbon Nanotube and Pitch-based Carbon Fiber via One-step Solvent-free Fabrication,” Functional Composites and Structures, Vol. 4, 2022, 015008.
  •  
  • 12. Kim, S.Y., Noh, Y.J., Jang, J.U., and Choi, S.K., “Conductive Properties of Thermoplastic Carbon Fiber Reinforced Plastics Highly Filled with Carbon Fiber Fabrics and Conductive Carbon Fillers,” Composites Research, Vol. 34, No. 5, 2021, pp. 290-295.
  •  
  • 13. Park, M., Park, J.H., Yang, B.J., Cho, J., Kim, S.Y., and Jung, I., “Enhanced Interfacial, Electrical, and Flexural Properties of Polyphenylene Sulfide Composites Filled with Carbon Fibers Modified by Electrophoretic Surface Deposition of Multi-walled Carbon Nanotubes,” Composites Part A: Applied Science and Manufacturing, Vol. 109, 2018, pp. 124-130.
  •  
  • 14. Jang, H.G., Yang, B.J., Khill, M.S., Kim, S.Y., and Kim, J., “Comprehensive Study of Effects of Filler Length on Mechanical, Electrical, and Thermal Properties of Multi-walled Carbon Nanotube/polyamide 6 Composites,” Composites Part A: Applied Science and Manufacturing, Vol. 125, 2019, 105542.
  •  
  • 15. Kim, S.Y., Jang, J.U., Haile, B.F., Lee, M.W., and Yang B.J., “Swarm Intelligence Integrated Micromechanical Model to Investigate Thermal Conductivity of Multi-walled Carbon Nanotube-embedded Cyclic Butylene Terephthalate Thermoplastic Nanocomposites,” Composites Part A: Applied Science and Manufacturing, Vol. 128, 2020, 105646.
  •  
  • 16. Yang, B.J., Jang, J.U., Eem, S.H., and Kim, S.Y., “A Probabilistic Micromechanical Modeling for Electrical Properties of Nanocomposites with Multi-walled Carbon Nanotube Morphology,” Composites Part A: Applied Science and Manufacturing, Vol. 92, 2017, pp. 108-117.
  •  
  • 17. Kim, H.S., Jang, J.U., Yu, J., and Kim, S.Y., “Thermal Conductivity of Polymer Composites Based on the Length of Multi-walled Carbon Nanotubes,” Composites Part B: Engineering, Vol. 79, 2015, pp. 505-512.
  •  
  • 18. Park, M., Lee, H.S., Jang, J.U., Park, J.H., Kim, C.H., Kim, S.Y., and Kim, J., “Phenyl Glycidyl Ether as an Effective Noncovalent Functionalization Agent for Multiwalled Carbon Nanotube Reinforced Polyamide 6 Nanocomposite Fibers,” Composites Science and Technology, Vol. 177, 2019, pp. 96-102.
  •  
  • 19. Zhou, E., Xi, J., Guo, Y., Liu, Y., Xu, Z., Peng, L., Gao, W., Ying, J., Chen, Z., and Gao, C., “Synergistic Effect of Graphene and Carbon Nanotube for High-performance Electromagnetic Interference Shielding Films,” Carbon, Vol. 133, 2018, pp. 316-322.
  •  
  • 20. Wang, G., Liao, X., Yang, J., Tang, W., Zhang, Y., Jiang, Q., and Li, G., “Frequency-selective and Tunable Electromagnetic Shielding Effectiveness via the Sandwich Structure of Silicone Rubber/graphene Composite,” Composite Science and Technology, Vol. 184, 2019, 107847.
  •  
  • 21. Wang, M., Kang, Q., and Pan, N., “Thermal Conductivity Enhancement of Carbon Fiber Composites,” Applied Thermal Engineering, Vol. 29, No. 2-3, 2009, pp. 418-421.
  •  
  • 22. Kim, P., Shi, L., Majumdar, A., and McEuen, P.L., “Thermal Transport Measurement of Individual Multiwalled Nanotube” Physical Review Letters, Vol. 87, 2001, 215502.
  •  
  • 23. Jang, J., Lee, S.H., Kim, J., Kim, S.Y., and Kim, S.H., “Nano-bridge Effect on Thermal Conductivity of Hybrid Polymer Composites Incorporating 1D and 2D Nanocarbon Fillers” Composites Part B: Engineering, Vol. 222, 2021, 109072.
  •  

This Article

Correspondence to

  • Jong Hyun Park***, Seong Yun Kim*, **
  • * Department of Organic Materials and Textile Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea
    ** Department of Carbon Composites Convergence Materials Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea
    *** Carbon and Hydrogen Research Association, Jeonju, Republic of Korea

  • E-mail: jhpark@carbonkorea.or.kr, sykim82@jbnu.ac.kr