Special Issue
  • Improving Through-thickness Thermal Conductivity Characteristic of Hybrid Composite with Quantum Annealing
  • Sung wook Cho*, Seong S. Cheon*†

  • * Department of Mechanical Engineering, Graduated School, Kongju National University

  • Quantum annealing을 통한 hybrid composite의 두께 방향 열전도 특성 개선
  • 조성욱*· 전성식*†

  • This article is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

References
  • 1. Ren, Y., Wang, H., Guan, Z., and Yang, K., “Evaluation of the Properties and Applications of FRP Bars and Anchors: A Review,” Reviews on Advanced Materials Science, Vol. 62, No. 1, 2023.
  •  
  • 2. Pozegic, T.R., Anguita, J.V., Hamerton, I., Jayawardena, K.D.G.I., Chen, J.S., Stolojan, V., Ballocchi, P., Walsh, R., and Silva, S.R.P., “Multi-Functional Carbon Fibre Composites using Carbon Nanotubes as an Alternative to Polymer Sizing,” Scientific Reports, Vol. 6, 2016, pp. 1-11.
  •  
  • 3. Maiti, S., Islam, M.R., Uddin, M.A., Afroj, S., Eichhorn, S.J., and Karim, N., “Sustainable fiber‐reinforced composites: A Review,” Advanced Sustainable Systems, Vol. 6, No. 11, 2022, 2200258.
  •  
  • 4. Borges, C., Chícharo, A., Araújo, A., Silva, J., and Santos, R.M., “Designing of Carbon Fiber-reinforced Polymer (CFRP) Composites for a Second-life in the Aeronautic Industry: Strategies Towards a More Sustainable Future,” Frontiers in Materials, Vol. 10, 2023, pp. 1-14.
  •  
  • 5. Nasri, W., Driss, Z., Djebali, R., Lee, K.Y., Park, H.H., Bezazi, A., and Reis, P.N.B., “Thermal Study of Carbon-Fiber-Reinforced Polymer Composites Using Multiscale Modeling,” Materials (Basel), Vol. 16, No. 22, 2023, 7233.
  •  
  • 6. Ouyang, Z., Rao, Q., and Peng, X., “Significantly Improving Thermal Conductivity of Carbon Fiber Polymer Composite by Weaving Highly Conductive Films,” Composites Part A: Applied Science and Manufacturing, Vol. 163, 2022, 107183.
  •  
  • 7. Wei, J., Liao, M., Ma, A., Chen, Y., Duan, Z., Hou, X., Li, M., Jiang, N., ang Yu, J., “Enhanced Thermal Conductivity of Polydimethylsiloxane Composites with Carbon Fiber,” Composites Communications, Vol. 17, 2020, pp. 141-146.
  •  
  • 8. Sun, D., “Multi‐gating Injection Molding to Enhance the Thermal Conductivity of Carbon Fiber/polysulfone Composite,” Polymer Composites, Vol. 38, No. 1, 2017, pp. 185-191.
  •  
  • 9. Chen, J., Han, J., and Xu, D., “Thermal and Electrical Properties of the Epoxy Nanocomposites Reinforced with Purified Carbon Nanotubes,” Materials Letters, Vol. 246, 2019, pp. 20-23.
  •  
  • 10. Tiwari, M., Billing, B.K., Bedi, H.S., and Agnihotri, P.K., “Quantification of Carbon Nanotube Dispersion and Its Correlation with Mechanical and Thermal Properties of Epoxy Nanocomposites,” Journal of Applied Polymer Science, Vol. 137, No. 29, 2020, 48879.
  •  
  • 11. Caradonna, A., “Electrical and Thermal Conductivity of Epoxy-carbon Filler Composites Processed by Calendaring,” Materials (Basel), Vol. 12, No. 9, 2019, 1522.
  •  
  • 12. Wang, H., Li, L., Chen, Y., Li, M., Fu, H., Hou, X., Wu, X., Lin, C.T., Jiang, N., and Yu, J., “Efficient Thermal Transport Highway Construction within Epoxy Matrix via Hybrid Carbon Fibers and Alumina Particles,” ACS Omega, Vol. 5, No. 2, 2020, pp. 1170-1177.
  •  
  • 13. Kim, M., Sung, D.H., Park, Y.B., and Park, K., “Structural Optimization for Improvement of Thermal Conductivity of Woven Fabric Composites,” Composites Research, Vol. 30, No. 1, 2017, pp. 26-34.
  •  
  • 14. Lee, W., Kim, S., Sim, H.J., Lee, J.H., An, B.H., Kim, Y.J., Jeong, S.Y., and Shin, H., “Development of Homogenization Data-based Transfer Learning Framework to Predict Effective Mechanical Properties and Thermal Conductivity of Foam Structures,” Composites Research, Vol. 36, No. 3, 2023, pp. 205-210.
  •  
  • 15. Mw, J., “Next Generation Quantum Annealing System,” 2019.
  •  
  • 16. Adachi, S.H., and Henderson, M.P., “Application of Quantum Annealing to Training of Deep Neural Networks,” ArXiv Prepr. ArXiv 1510.06356 (2015).
  •  
  • 17. Boyda, E., Basu, S., Ganguly, S., Michaelis, A., Mukhopadhyay, S., and Nemani, R.R., “Deploying a Quantum Annealing Processor to Detect Tree Cover in Aerial Imagery of California,” PLoS One, Vol. 12, No. 2, 2017, pp. 1-22.
  •  
  • 18. Rajak, A., Suzuki, S., and Dutta, A., “Quantum Annealing: An Overview,” Philosophical Transactions of the Royal Society A, Vol. 381, No. 2241, 2023.
  •  
  • 19. Hauke, P., Katzgraber, H.G., Lechner, W., Nishimori, H., and Oliver, W.D., “Perspectives of Quantum Annealing: Methods and Implementations,” Reports on Progress in Physics, Vol. 83, No. 5, 2020, 054401.
  •  
  • 20. Albash, T., and Lidar, D.A., “Adiabatic Quantum Computation,” Reviews of Modern Physics, Vol. 90, No. 1, 2018, 15002.
  •  
  • 21. Imanaka, Y., Anazawa, T., Kumasaka, F., and Jippo, H., “Optimization of the Composition in a Composite Material for Microelectronics Application Using the Ising Model,” Scientific Reports,, Vol. 11, No. 1, 2021, pp. 1-7.
  •  
  • 22. ASTM E1461-13 Standard Test Method for Thermal Diffusivity by the Flash Method, (n.d.).
  •  
  • 23. Lian, T.W., Kondo, A., Akoshima, M., Abe, H., Ohmura, T., Tuan, W.H., and Naito, M., “Rapid Thermal Conductivity Measurement of Porous Thermal Insulation Material by Laser Flash Method,” Advanced Powder Technology, Vol. 27, No. 3, 2016, pp. 882-885.
  •  
  • 24. Palacios, A., Cong, L., Navarro, M.E., Ding, Y., and Barreneche, C., “Thermal Conductivity Measurement Techniques for Characterizing Thermal Energy Storage Materials - A Review,” Renewable and Sustainable Energy Reviews, Vol. 108, 2019, pp. 32-52.
  •  
  • 25. Johnston, A.A., “An Integrated Model of the Development of Process-induced Deformation in Autoclave Processing of Composite Structures,” Univ. Br. Columbia (April), 1997, pp. 1-367.
  •  
  • 26. Radcliffe, D.J., and Rosenberg, H.M., “The Thermal Conductivity of Glass-fibre and Carbon-fibre/epoxy Composites from 2 to 80 K,” Cryogenics (Guildf), Vol. 22, No. 5, 1982, pp. 245-249.
  •  
  • 27. Athanasopoulos, N., Koutsoukis, G., Vlachos, D., and Kostopoulos, V., “Temperature Uniformity Analysis and Development of Open Lightweight Composite Molds Using Carbon Fibers as Heating Elements,” Composites Part B: Engineering, Vol. 50, 2013, pp. 279-289.
  •  
  • 28. He, C., and Xu, J., “Finite Element Analysis of the Thermal Conductivity and the Specific Heat of Carbon Fiber Reinforced Plastic (CFRP) Composites,” Proc. - Int. Conf. Artif. Intell. Electromechanical Autom. AIEA 2020 (2020) 771-774.
  •  
  • 29. “MIT Library. 6.777J/2.751J Material Properties Database; MIT Library: Cambridge, MA, USA,” (n.d.).
  •  
  • 30. “D-Wave Ocean Documentation, https://docs.ocean.dwavesys.com/ en/stable/concepts/index.html,” (n.d.).
  •  

This Article

Correspondence to

  • Seong S. Cheon
  • Department of Mechanical Engineering, Graduated School, Kongju National University

  • E-mail: sscheon@kongju.ac.kr