Original Article
  • An In-silico Simulation Study on Size-dependent Electroelastic Properties of Hexagonal Boron Nitride Nanotubes
  • Jaewon Lee*, Seunghwa Yang*†

  • * School of Energy Systems Engineering, Chung-Ang University

  • 인실리코 해석을 통한 단일벽 질화붕소 나노튜브의 크기 변화에 따른 압전탄성 거동 예측연구
  • 이재원*· 양승화*†

  • This article is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

References
  • 1. Han, S.A., Lee, J.H., Seung, W., Lee, J., Kim, S.W., and Kim, J.H. “Patchable and Implantable 2D Nanogenerator,” Small, Vol. 17, Issue 9, 2021, 1903519.
  •  
  • 2. Huo, Z., Wei, Y., Wang, Y., Wang, Z.L., and Sun, Q., “Integrated Self-Powered Sensors Based on 2D Material Devices,” Advanced Functional Materials, Vol. 32, Issue 41, 2022.
  •  
  • 3. Arenal, R., Wang, M.S., Xu, Z., Loiseau, A., and Golberg, D., “Young Modulus, Mechanical and Electrical Properties of Isolated Individual and Bundled Single-walled Boron Nitride Nanotubes,” Nanotechnology, Vol. 22, No. 26, 2011.
  •  
  • 4. Mele, E.J., and Král, P., “Electric Polarization of Heteropolar Nanotubes as a Geometric Phase,” Physical Review Letters, Vol. 88, No. 5, 2002.
  •  
  • 5. Kostoglou, N., Polychronopoulou, K., and Rebholz, C., “Thermal and Chemical Stability of Hexagonal Boron Nitride (h-BN) Nanoplatelets,” Vacuum, Vol. 112, 2015, pp. 42-45.
  •  
  • 6. Terao, T., Bando, Y., Mitome, M., Zhi, C., Tang, C., and Golberg, D. “Thermal Conductivity Improvement of Polymer Films by Catechin-modified Boron Nitride Nanotubes,” Journal of Physical Chemistry C, Vol. 113, No. 31, 2009, pp. 13605-13609.
  •  
  • 7. Salvetti, A., Rossi, L., Iacopetti, P., Li, X., Nitti, S., Pellegrino, T., Mattoli, V., Golberg, D., and Ciofani, G., “In vivo Biocompatibility of Boron Nitride Nanotubes: Effects on Stem Cell Biology and Tissue Regeneration in Planarians,” Nanomedicine, Vol. 10, No. 12, 2015.
  •  
  • 8. Sauti, G., Park, C., Kang, J.H., Kim, J., Harrison, J.S., Smith, M.W., Jordan, K., Lowther, S.E., Lillehei, P.T., and Thibeault, S.A., “Boron Nitride and Boron Nitride Nanotube Materials for Radiation Shielding,” US Patent US20130119316 A1,16 May 2013.
  •  
  • 9. Kang, J.H., Sauti, G., Park, C., Yamakov, V.I., Wise, K.E., Lowther, S.E., Fay, C.C., Thibeault, S.A., and Bryant, R.G., “Multifunctional Electroactive Nanocomposites Based on Piezoelectric Boron Nitride Nanotubes,” ACS Nano, Vol. 9, No. 12, 2015, pp. 11942-11950.
  •  
  • 10. Kim, K.B., Jang, W., Cho, J.Y., Woo, S.B., Jeon, D.H., Ahn, J.H., Hong, S.D., Koo, H.Y., and Sung, T.H., “Transparent and Flexible Piezoelectric Sensor for Detecting Human Movement with a Boron Nitride Nanosheet (BNNS),” Nano Energy, Vol. 54, 2018, pp. 91-98.
  •  
  • 11. Lee, J., Lee, S., Zo, M.K., Seo, D., and Kim, J., “Boron Nitride Nanotubes and Its Industrial Applications,” Korean Industrial Chemistry, Vol. 20, No. 4, 2017.
  •  
  • 12. Yang, S., “Piezoelectric and Dielectric Constants of Topologically Defected Boron Nitride Nanotubes,” Dalton Transactions, Vol. 52, No. 18, 2023, pp. 5895-5908.
  •  
  • 13. Zhang, J., “Boron Nitride Honeycombs with Superb and Tunable Piezopotential Properties,” Nano Energy, Vol. 41, 2017, pp. 460-468.
  •  
  • 14. Zhang, J., “Elastocaloric Effect on the Piezoelectric Potential of Boron Nitride Nanotubes,” Journal of Physics D: Applied Physics, Vol. 50, No. 41, 2017.
  •  
  • 15. Kim, I., Roh, H., Yu, J., Jayababu, N., and Kim, D., “Boron Nitride Nanotube-Based Contact Electrification-Assisted Piezoelectric Nanogenerator as a Kinematic Sensor for Detecting the Flexion-Extension Motion of a Robot Finger,” ACS Energy Letters, Vol. 5, No. 5, 2020, 1577-1585.
  •  
  • 16. Choi, S., and Yang, S., “Molecular Dynamics and Micromechanics Study on Mechanical Behavior and Interfacial Properties of BNNT/Polymer Nanocomposites,” Composites Research, Vol. 30, No. 4, 2017, pp. 247-253.
  •  
  • 17. Duerloo, K.A.N., Ong, M.T., and Reed, E.J., “Intrinsic Piezoelectricity in Two-dimensional Materials,” Journal of Physical Chemistry Letters, Vol. 3, No. 19, 2012, pp. 2871-2876.
  •  
  • 18. Tersoff, J., “Modeling Solid-state Chemistry: Interatomic Potentials for Multicomponent Systems,” Physical Review B, Vol. 39, No. 8, 1989.
  •  
  • 19. Guo, G.Y., Ishibashi, S., Tamura, T., and Terakura, K., “Static dielectric Response and Born Effective Charge of BN Nanotubes from ab Initio Finite Electric Field Calculations,” Physical Review B - Condensed Matter and Materials Physics, Vol. 75, No. 24, 2007.
  •  
  • 20. Donald A., McQuarrie, Statistical Mechanics, University of Science Books, 2000.
  •  
  • 21. Yang, S., Yu, S., and Cho, M., “A Study on the Development of Multi-scale Bridging Method Considering the Particle Size and Concentration Effect of Nanocomposites,” Journal of the Computational Structural Engineering Institute of Korea, Vol. 22, No. 4, 2009, pp. 343-348.
  •  
  • 22. Accelrys Inc. San Francisco.
  •  
  • 23. Plimpton, S., “Fast Parallel Algorithms for Short-Range Molecular Dynamics,” Journal of Computational Physics, Vol. 117, No. 1, 1995, pp. 1-19.
  •  

This Article

Correspondence to

  • Seunghwa Yang
  • Department of Energy Systems Engineering, Chung-Ang University

  • E-mail: fafala@cau.ac.kr