Original Article
  • Thermal Decomposition Energy of Liquid Crystalline Epoxy
  • Seung Hyun Cho*†

  • Department of Materials Science and Engineering, Soong-sil University

  • 열경화성 액정 에폭시 수지의 열분해 활성화에너지
  • 조승현*†

  • This article is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

References
  • 1. Lu, M., Shim, M., and Kim, S., “Thermal Degradation of LC Epoxy Thermosets”, Journal of Applied Polymer Science, Vol. 75, 2000, pp. 1514-1521.
  •  
  • 2. Li, Y., Badrinarayanan, P., and Kessler, M., “Liquid Crystalline Resin Based on Biphenyl Mesogen: Thermal Characterization”, Polymer, Vol. 54, 2013, pp. 3017-3025.
  •  
  • 3. Hirn, B., Carfagna, C., and Lanzetta, R., “Linear Precursors of Liquid Crystalline Thermosets”, Journal of Materials Chemistry, Vol. 6, 1996, pp. 1473-1478.
  •  
  • 4. Lee, J., Shim, M., and Kim, S., “Synthesis of Liquid Crystalline Epoxy and Its Mechanical and Electrical Characteristics-Curing Reaction of LCE with Diamines by DSC Analysis”, Journal of Applied Polymer Science, Vol. 83, 2002, pp. 2419-2425.
  •  
  • 5. Harada, M., Hamaura, N., Ochi, M., and Agari, Y., “Theraml Conductivity of Liquid Crystalline Epoxy/BN Filler Composites having Ordered Network Structure”, Composites: Part B, Vol. 55, 2013, pp. 306-313.
  •  
  • 6. Akatsuka, M., and Takezawa, Y., “Study of High Thermal Conductive Epoxy Resins Containg Controlled High-order Structures”, Journal of Applied Polymer Science, Vol. 89, 2003, pp. 2464-2467.
  •  
  • 7. Giamberini, M., Amendola, E., and Carfagna, C., “Liquid Cryastellne Epoxy Thermosets”, Molecular Crystals and Liquid Crystals, Vol. 89, 1995, pp. 9-22.
  •  
  • 8. Moon, H., Kim, K., Hwangbo, S., and Cho, S., “Thermal Decomposition Activation Energy of Liquid Crystalline Epoxy Composite with Zirconia Filler”, Textile Science and Engineering, Vol. 52, 2015, pp. 206-214.
  •  
  • 9. Flynn, J., and Wall, L., “A Quick, Direct Method for the Determination of Activation Energy from Thermogravimetric Data”, Journal of Polymer Science Part B: Polymer Letters, Vol. 4, 1966, pp. 323-328.
  •  
  • 10. Yao, F., Wu, Q., Lei, Y., Guo, W., and Xu, Y., “Thermal Decomposition Kinetics of Natural Fibers: Activation Energy with Dynamic Thermogravimetric Analysis”, Polymer Degradation and Stability, Vol. 93, 2008, pp. 90-98.
  •  
  • 11. Oh, J., Lee, J., and Ahn, W., “Non-isothermal TGA Analysis on Thermal Degradation Kinetics of Modified- NR Rubber Composites”, Polymer (Korea), Vol. 33, 2009, pp. 435-440.
  •  
  • 12. Gavrin, A., Curts, C., and Douglas, E., “High-temperature Stability of a Novel Phenylethynyl Liquid-crystalline Thermoset,” Journal of Polymer Science Part A: Polymer Chemistry, Vol. 37, 1999, pp. 4184.
  •  
  • 13. Frich, D., Economy, J., and Goranov, K., “Aromatic Copolyester Thermosets: High Temperature Adhesive Properties”, Polymer Engineering & Science, Vol. 37, 1997, pp. 541-548.
  •  
  • 14. Penco, M., Sartore, L., Bignotti, F., D’Antone, S., and Landro, L., “Thermal Properties of a New Class of Block Copolymers Based on Segments of Poly(d,l-lactic-glycolic acid) and Poly(ε-caprolactone)”, European Polymer Journal, Vol. 36, 2000, pp. 901-908.
  •  
  • 15. Liaw, D., and Shen, W., “Curing of Acrylated Epoxy Resin Based on Bisphenol-S”, Polymer Engineering & Science, Vol. 34, 1994, pp. 1297-1303.
  •  
  • 16. Lee, J., Shim, M., and Kim, S., “Thermal Decomposition Kinetics of an Epoxy Resin with Rubber‐modified Curing Agent”, Journal of Applied Polymer Science, Vol. 81, 2001, pp. 479-485.
  •  
  • 17. Lu, M., Shim, M., and Kim, S., “Thermal Degradation of LC Epoxy Thermosets”, Journal of Applied Polymer Science, Vol. 75, 2000, pp. 1514-1521.
  •  

This Article

Correspondence to

  • Seung Hyun Cho
  • Department of Materials Science and Engineering, Soong-sil University

  • E-mail: scho@ssu.ac.kr