Original Article
  • Measurements of the Temperature Coefficient of Resistance of CVD-Grown Graphene Coated with PEI
  • Soomook Lim*, Ji Won Suk*†

  • * School of Mechanical Engineering, Sungkyunkwan University, Korea

  • PEI가 코팅된 CVD 그래핀의 저항 온도 계수 측정
  • 임수묵*· 석지원*†

  • This article is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

References
  • 1. Cheng, Y., Wang, K., Xu, H., Li, T., Jin, Q., and Cui, D., “Recent Developments in Sensors for Wearable Device Applications,” Analytical and Bioanalytical Chemistry, Vol. 413, No. 24, 2021, pp. 6037-6057.
  •  
  • 2. Na, S.C., Lee, H.J., Lim, T., Yun, J.M., and Suk, J.W., “Stretchable Strain Sensors Using 3D Printed Polymer Structures Coated with Graphene/Carbon Nanofiber Hybrids,” Composites Research, Vol. 35, No. 4, 2022, pp. 283-287.
  •  
  • 3. Piao, C., and Suk, J.W., “Enhanced Cooling Performance of Polymer Actuators Using Carbon Nanotube Composites,” Composites Research, Vol. 30, No. 2, 2017, pp. 165-168.
  •  
  • 4. Piao, C., Jang, H., Lim, T., Kim, H., Choi, H.R., Hao, Y., and Suk, J.W., “Enhanced Dynamic Performance of Twisted and Coiled Soft Actuators Using Graphene Coating,” Composites Part B: Engineering, Vol. 178, No. 1, 2019, pp. 107499.
  •  
  • 5. Lim, T., Ho, B.T., and Suk, J.W., “High-performance and Thermostable Wire Supercapacitors Using Mesoporous Activated Graphene Deposited on Continuous Multilayer Graphene,” Journal of Materials Chemistry A, Vol. 9, No. 8, 2021, pp. 4800-4809.
  •  
  • 6. Nummenmaa, L., Glerean, E., Hari, R., and Hietanen, J.K., “Bodily Maps of Emotions,” Proceedings of the National Academy of Sciences, Vol. 111, No. 2, 2014, pp. 646-651.
  •  
  • 7. Kang, M., Jeong, H., Park, S.W., Hong, J., Lee, H., Chae, Y., Yang, S., and Ahn, J.H., “Wireless Graphene-based Thermal Patch for Obtaining Temperature Distribution and Performing Thermography,” Science Advances, Vol. 8, No. 15, 2022, pp. eabm6693.
  •  
  • 8. Kuzubasoglu, B.A., and Bahadir, S.K., “Flexible Temperature Sensors: A Review,” Sensors and Actuators A: Physical, Vol. 315, 2020, pp. 112282.
  •  
  • 9. Takei, K., Honda, W., Harada, S., Arie, T., and Akita, S., “Toward Flexible and Wearable Human‐interactive Health‐ monitoring Devices,” Advanced Healthcare Materials, Vol. 4, No. 4, 2015, pp. 487-500.
  •  
  • 10. Li, Q., Zhang, L.N., Tao, X.M., and Ding, X., “Review of Flexible Temperature Sensing Networks for Wearable Physiological Monitoring,” Advanced Healthcare Materials, Vol. 6, No. 12, 2017, pp. 1601371.
  •  
  • 11. Balandin, A.A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., and Lau, C.N., “Superior Thermal Conductivity of Single-layer Graphene,” Nano Letters, Vol. 8, No. 3, 2008, pp. 902-907.
  •  
  • 12. Lee, C., Wei, X., Kysar, J.W., and Hone, J., “Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene,” Science, Vol. 321, No. 5887, 2008, pp. 385-388.
  •  
  • 13. Bolotin, K.I., Sikes, K.J., Jiang, Z., Klima, M., Fudenberg, G., Hone, J., Kim, P., and Stormer, H.L., “Ultrahigh Electron Mobility in Suspended Graphene,” Solid State Communications, Vol. 146, No. 9-10, 2008, pp. 351-355.
  •  
  • 14. Ho, B.T., Lim, T., Jeong, M.H., and Suk, J.W., “Graphene Fibers Containing Activated Graphene for High-performance Solid-state Flexible Supercapacitors,” ACS Applied Energy Materials, Vol. 4, No. 9, 2021, pp. 8883-8890.
  •  
  • 15. Nguyen, D.D., Megra, Y.T., Lim, T., and Suk, J.W., “Tunable Interlayer Interactions in Reduced Graphene Oxide Paper,” ACS Applied Materials & Interfaces, Vol. 15, No. 5, 2023, pp. 7627-7634.
  •  
  • 16. Suk, J.W., Hao, Y., Liechti, K.M., and Ruoff, R.S., “Impact of Grain Boundaries on the Elastic Behavior of Transferred Polycrystalline Graphene,” Chemistry of Materials, Vol. 32, No. 14, 2020, pp. 6078-6084.
  •  
  • 17. Lee, D., Lee, S., An, B.S., Kim, T.H., Yang, C.W., Suk, J.W., and Baik, S., “Dependence of the In-plane Thermal Conductivity of Graphene on Grain Misorientation,” Chemistry of Materials, Vol. 29, No. 24, 2017, pp. 10409-10417.
  •  
  • 18. Lee, H., Paeng, K., and Kim, I.S., “A Review of Doping Modulation in Graphene,” Synthetic Metals, Vol. 244, 2018, pp. 36-47.
  •  
  • 19. Hu, Z., Zhao, Y., Zou, W., Lu, Q., Liao, J., Li, F., Shang, M., Lin, L., and Liu, Z., “Doping of Graphene Films: Open the Way to Applications in Electronics and Optoelectronics,” Advanced Functional Materials, Vol. 32, No. 42, 2022, pp. 2203179.
  •  
  • 20. Liu, H., Liu, Y., and Zhu, D., “Chemical Doping of Graphene,” Journal of Materials Chemistry, Vol. 21, No. 10, 2011, pp. 3335-3345.
  •  
  • 21. Lim, S., and Suk, J.W., “Flexible Temperature Sensors Based on Two-dimensional Materials for Wearable Devices,” Journal of Physics D: Applied Physics, Vol. 56, No. 6, 2022, pp. 063001.
  •  
  • 22. Megra, Y.T., Lim, S., Lim, T., Na, S.R., and Suk, J.W., “Enhancement of the Adhesion Energy Between Monolayer Graphene and SiO2 by Thermal Annealing,” Applied Surface Science, Vol. 570, No. 30, 2021, pp. 151243.
  •  
  • 23. Suk, J.W., Mancevski, V., Hao, Y., Liechti, K.M., and Ruoff, R.S., “Fracture of Polycrystalline Graphene Membranes by in situ Nanoindentation in a Scanning Electron Microscope,” Physica Status Solidi (RRL)–Rapid Research Letters, Vol. 9, No. 10, 2015, pp. 564-569.
  •  
  • 24. Lim, S., Park, H., Yamamoto, G., Lee, C., and Suk, J.W., “Measurements of the Electrical Conductivity of Monolayer Graphene Flakes Using Conductive Atomic Force Microscopy,” Nanomaterials, Vol. 11, No. 10, 2021, pp. 2575.
  •  
  • 25. Suk, J.W., Kitt, A., Magnuson, C.W., Hao, Y., Ahmed, S., An, J., Swan, A.K., Goldberg, B.B., and Ruoff, R.S., “Transfer of CVD-grown Monolayer Graphene onto Arbitrary Substrates,” ACS Nano, Vol. 5, No. 9, 2011, pp. 6916-6924.
  •  
  • 26. Faustini, M., Louis, B., Albouy, P.A., Kuemmel, M., and Grosso, D., “Preparation of Sol-gel Films by Dip-coating in Extreme Conditions,” The Journal of Physical Chemistry C, Vol. 114, No. 17, 2010, pp. 7637-7645.
  •  
  • 27. Min, S., Kim, J., Park, C., Jin, J.H., and Min, N.K., “Long-term Stability of Superhydrophilic Oxygen Plasma-modified Single-walled Carbon Nanotube Network Surfaces and the Influence on Ammonia Gas Detection,” Applied Surface Science, Vol. 410, 2017, pp. 105-110.
  •  
  • 28. Suk, J.W., Lee, W.H., Lee, J., Chou, H., Piner, R.D., Hao, Y., Akinwande, D., and Ruoff, R.S., “Enhancement of the Electrical Properties of Graphene Grown by Chemical Vapor Deposition via Controlling the Effects of Polymer Residue,” Nano Letters, Vol. 13, No. 4, 2013, pp. 1462-1467.
  •  
  • 29. Yan, C., Wang, J., and Lee, P.S., “Stretchable Graphene Thermistor with Tunable Thermal Index,” ACS Nano, Vol. 9, No. 2, 2015, pp. 2130-2137.
  •  
  • 30. Lim, G., Kihm, K.D., Kim, H.G., Lee, W., Lee, W., Pyun, K.R., Cheon, P., Min, J.Y., and Ko, S.H., “Enhanced Thermoelectric Conversion Efficiency of CVD Graphene with Reduced Grain Sizes,” Nanomaterials, Vol. 8, No. 7, 2018, pp. 557.
  •  
  • 31. Ferrari, A.C., Meyer, J.C., Scardaci, V., Casiraghi, C., Lazzeri, M., Mauri, F., Piscanec, S., Jiang, D., Novoselov, K.S., Roth, S., and Geim, A.K., “Raman Spectrum of Graphene and Graphene Layers,” Physical Review Letters, Vol. 97, No. 18, 2006, pp. 187401.
  •  
  • 32. Eckmann, A., Felten, A., Mishchenko, A., Britnell, L., Krupke, R., Novoselov, K.S., and Casiraghi, C., “Probing the Nature of Defects in Graphene by Raman Spectroscopy,” Nano Letters, Vol. 12, No. 8, 2012, pp. 3925-3930.
  •  
  • 33. Sadezky, A., Muckenhuber, H., Grothe, H., Niessner, R., and Pöschl, U., “Raman Microspectroscopy of Soot and Related Carbonaceous Materials: Spectral Analysis and Structural Information,” Carbon, Vol. 43, No. 8, 2005, pp. 1731-1742.
  •  
  • 34. Wang, Z., Liu, J., Hao, X., Wang, Y., Chen, Y., Li, P., and Dong, M., “Investigating the Stability of Molecule Doped Graphene Field Effect Transistors,” New Journal of Chemistry, Vol. 43, No. 38, 2019, pp. 15275-15279.
  •  
  • 35. Li, H., Singh, A., Bayram, F., Childress, A.S., Rao, A.M., and Koley, G., “Impact of Oxygen Plasma Treatment on Carrier Transport and Molecular Adsorption in Graphene,” Nanoscale, Vol. 11, No. 23, 2019, pp. 11145-11151.
  •  
  • 36. Farmer, D.B., Golizadeh-Mojarad, R., Perebeinos, V., Lin, Y.M., Tulevski, G.S., Tsang, J.C., and Avouris, P., “Chemical Doping and Electron-Hole Conduction Asymmetry in Graphene Devices,” Nano Letters, Vol. 9, No. 1, 2009, pp. 388-392.
  •  
  • 37. Sarkar, S., Amin, K.R., Modak, R., Singh, A., Mukerjee, S., and Bid, A., “Role of Different Scattering Mechanisms on the Temperature Dependence of Transport in Graphene,” Scientific Reports, Vol. 5, No. 1, 2015, pp. 16772.
  •  
  • 38. Kabiri Ameri, S., Ho, R., Jang, H., Tao, L., Wang, Y., Wang, L., Schnyer, D.M., Akinwande, D., and Lu, N., “Graphene Electronic Tattoo Sensors,” ACS Nano, Vol. 11, No. 8, 2017, pp. 7634-7641.
  •  
  • 39. Torres, J., Liu, Y., So, S., Yi, H., Park, S., Lee, J.K., Lim, S.C., and Yun, M., “Effects of Surface Modifications to Single and Multilayer Graphene Temperature Coefficient of Resistance,” ACS Applied Materials & Interfaces, Vol. 12, No. 43, 2020, pp. 48890-48898.
  •  
  • 40. Karthick, R., Brindha, M., Selvaraj, M., and Ramu, S., “Stable Colloidal Dispersion of Functionalized Reduced Graphene Oxide in Aqueous Medium for Transparent Conductive Film,” Journal of Colloid and Interface Science, Vol. 406, 2013, pp. 69-74.
  •  
  • 41. Araya-Hermosilla, E., Minichino, M., Mattoli, V., and Pucci, A., “Chemical and Temperature Sensors Based on Functionalized Reduced Graphene Oxide,” Chemosensors, Vol. 8, No. 2, 2020, pp. 43.
  •  
  • 42. Barmpakos, D., Belessi, V., Xanthopoulos, N., Krontiras, C.A., and Kaltsas, G., “Flexible Inkjet-printed Heaters Utilizing Graphene-based Inks,” Sensors, Vol. 22, No. 3, 2022, pp. 1173.
  •  

This Article

Correspondence to

  • Ji Won Suk
  • School of Mechanical Engineering, Department of Smart Fab. Technology, SKKU Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University, Korea

  • E-mail: jwsuk@skku.edu