Original Article
  • Evaluation of Multi-axis Robotic Manufactured Thermoplastic Composite Structure Using Stamp-forming Process
  • Ho-Young Shin, Ji-Sub Noh, Gyu-Beom Park*, Chang-Min Seok**, Jin-Hwe Kweon*, Byeong-Su Kwak*†, Young-Woo Nam**,***†

  • * School of Mechanical and Aerospace Engineering, Gyeongsang National University
    ** Graduate School of Aerospace and Mechanical Engineering, Korea Aerospace University
    *** Department of Smart Drone Engineering, Korea Aerospace University

  • 다관절 로봇 암 기반 고속 열 성형 공정을 활용한 열가소성 복합재 부품 평가
  • 신호영 · 노지섭 · 박규범*· 석창민**· 권진회*· 곽병수*†· 남영우**,***†

  • This article is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

References
  • 1. Vaidya, U.K., and Chawla, K.K., “Processing of Fibre Reinforced Thermoplastic Composites”, International Materials Reviews, Vol. 53, No. 4, 2008, pp. 185-218.
  •  
  • 2. Sajan, S., and Philip Selvaraj, D., “A Review on Polymer Matrix Composite Materials and Their Applications,” Materialstoday: Proceedings, Vol. 47, 2021, pp. 5493-5498.
  •  
  • 3. Skoczylas, J., Samborski, S., and Kłonica, M., “The Application of Composite Materials in the Aerospace Industry,” Journal of Technology and Exploitation in Mechanical Engineering, Vol. 5, No. 1, 2019, pp. 1-6.
  •  
  • 4. Thor, M., Sause, M.G.R., and Hinterhölzl, R.M., “Mechanisms of Origin and Classification of Out-of-Plane Fiber Waviness in Composite Materials—A Review”, Journal of Composite Science, Vol. 4, No. 3, 2020, pp. 1-39.
  •  
  • 5. Parveez, B., Kittur, M.I., Badruddin, I.A., Kamangar, S., Hussien, M., and Umarfarooq, M.A., “Scientific Advancements in Composite Materials for Aircraft Applications: A Review”, Polymers, Vol. 14, No. 22, 2022, pp. 1-32.
  •  
  • 6. Byun, S.W., Choi, D.K., Lee, S.Y., Lee, C.J., and Kim, S.W., “Detection of Internal Damage in CFRP-Laminated Plates Using Signal Extraction Method”, International Journal of Aeronautical and Space Sciences, https://doi.org/10.1007/s42405-023-00655-8, 2023.
  •  
  • 7. Hoang, V.T., Lee, D.S., Nam, Y.W., and Kweon, J.H., “Numerical Prediction of Failure Load of Scarf-Patch-Repaired CFRP Composite Using Damage Zone Model and Cohesive Zone Model”, International Journal of Aeronautical and Space Sciences, Vol. 24, 2023, pp. 419-429.
  •  
  • 8. Rybicka, J., Tiwari, A., and Leeke, G.A., “Technology Readiness Level Assessment of Composites Recycling Technologies”, Journal of Cleaner Production, Vol. 112, 2016, pp. 1001-1012.
  •  
  • 9. López, F.A., Martín, M.I., Alguacil, F.J., Rincón, J.M., Centeno, T.A., and Romero, M., “Thermolysis of Fibreglass Polyester Composite and Reutilisation of the Glass Fibre Residue to Obtain a Glass-ceramic Material”, Journal of Analytical and Applied Pyrolysis, Vol. 93, 2012, pp. 104-112.
  •  
  • 10. Jogura, G., Nawaz Khana, A., Dasa, A., Mahajanb, P., and Alagirusamya, R., “Impact Properties of Thermoplastic Composites”, Textile Progress, Vol. 50, No. 3, 2018, pp. 109-183.
  •  
  • 11. Jang, J.U., Youn, S.J., Kim, S.Y., and Park, M., “Effect of Polypropylene-grafted-maleic Anhydride Content on Physical Properties of Carbon Fiber Reinforced Polypropylene Composites”, Functional Composites and Structures, Vol. 2, 2022, 045008.
  •  
  • 12. Yi, D., Jeong, G., Park, S.D., Yoo, M.J., and Yang, H., “Surface-modified Carbon Fiber for Enhanced Electromagnetic Interference Shielding Performance in Thermoplastic Polyurethane Composites”, Functional Composites and Structures, Vol. 4, 2022, 045008.
  •  
  • 13. Atrian, A., and Panahi, H., “Experimental and Finite Element Investigation on Wrinkling Behavior in Deep Drawing Process of Al3105/Polypropylene/Steel304 Sandwich Sheets”, Procedia Manufacturing, Vol. 15, 2018, pp. 984-991.
  •  
  • 14. Liu, W., Xu, Y., and Yuan, S., “Effect of Pre-bulging on Wrinkling of Curved Surface Part by Hydromechanical Deep Drawing”, Procedia Engineering, Vol. 81, 2014, pp. 914-920.
  •  
  • 15. Guzaman-Maldonado, E., Wang, P., Hamila, N., and Boisse, P., “Experimental and Numerical Analysis of Wrinkle During Forming of Multi-layered Textile Composite”, Composite Structures, Vol. 208, 2019, pp. 213-223.
  •  
  • 16. Aridhi, A., Arfaoui, M., Mabrouki, T., Naouar, N., Denis, Y., Zarroug, M., and Boisse, P., “Textile Composite Structural Analysis Taking into Account the Forming Process”, Composites Part B: Engineering, Vol. 166, 2019, pp. 773-784.
  •  
  • 17. ten Thije, R.H.W., and Akkerman, R., “A Multi-layer Triangular Membrane Finite Element for the Forming Simulation of Laminated Composites”, Composite Part A: Applied Science and Manufacturing, Vol. 40, No. 6-7, 2009, pp. 739-753.
  •  
  • 18. Boisse, P., Hamila, N., Vidal-salle, E., and Dumont, F., “Simulation of Wrinkling during Textile Composite Reinforcement Forming. Influence of Tensile, In-plane Shear and Bending Stiffnesses”, Composite Science and Technology, Vol. 71, 2011, pp. 681-692.
  •  
  • 19. Prasad, A., Sharma, B., Vanualailai, J., and Kumar, S.A., “Stabilizing Controllers for Landmark Navigation of Planar Robots in an Obstacle-ridden Workspace”, Journal of Advanced Transportation, Vol. 2020, 2020, 8865608.
  •  
  • 20. Franklin, C.S., Dominguez, E.G., Fryman, J.D., and Lewandowski, M.L., “Collaborative Robotics: New Era of Human–robot Cooperation in the Workplace”, Journal of Safety Research, Vol. 74, 2020, pp. 153-160.
  •  
  • 21. Lin, H., Wang, J., Long, A.C., Clifford, M.J., and Harrison, P., “Predictive Modelling for Optimization of Textile Composite Forming”, Composite Science and Technology, Vol. 67, 2007, pp. 3242-3252.
  •  
  • 22. Xie, N., Smith, R.A., Mukhopadhyay, S., and Hallett, S.R., “A Numerical Study on the Influence of Composite Wrinkle Defect Geometry on Compressive Strength”, Materials and Design, Vol. 140, 2018, pp. 7-20.
  •  
  • 23. Tam, A.S., and Gutowski, T.G., “The Kinematics for Forming Ideal Aligned Fibre Composites into Complex Shapes”, Composites Manufacturing, Vol. 1, 1990, pp. 219-228.
  •  
  • 24. Bendakkour, A., Lebrun, G., and Laberge-Lebel, L., “Thermostamping of [0/90]n Carbon/Peek Laminates: Influence of Support Configuration and Demolding Temperature on Part Consolidation”, Polymer Composites, Vol. 39, 2018, pp. 3341-3352.
  •  
  • 25. Kar, K.K., Composite Materials Processing, Applications, Characterizations, Springer Berlin, Heidelberg, Germany, 2018
  •  
  • 26. Han, S.H., “Evaluation of Crystallinity and Mechanical Properties of Thermoplastic Composite Material Cooled by Die During Hot Press Forming”, Master Thesis, Korea Maritime and Ocean University, South Korea, 2019.
  •  
  • 27. ASTM D3418, Standard Test Method for Transition Temperatures and Enthalpies of Fusion and Crystallization of Polymers by Differential Scanning Calorimetry.
  •  
  • 28. Martin, I., Fernandez, K., Cuenca, J., Sanchez, C., Anaya, S., and Elices, R., “Design and Manufacture of a Reinforced Fuselage Structure Through Automatic Laying-up and In-situ Consolidation with Co-consolidation of Skin and Stringers Using Thermoplastic Composite Materials”, Heliyon, Vol. 9, 2023.
  •  

This Article

Correspondence to

  • Byeong-Su Kwak*, Young-Woo Nam**,***
  • * School of Mechanical and Aerospace Engineering, Gyeongsang National University
    ** Graduate School of Aerospace and Mechanical Engineering, Korea Aerospace University
    *** Department of Smart Drone Engineering, Korea Aerospace University

  • E-mail: bs.kwak@gnu.ac.kr, ywnam@kau.ac.kr