Original Article
  • Inverse Estimation and Verification of Parameters for Improving Reliability of Impact Analysis of CFRP Composite Based on Artificial Neural Networks
  • Ji-Ye Bak*, Jeong Kim*†

  • Department of Aerospace Engineering, Pusan National University, Busan, Korea

  • 인공신경망 기반 CFRP 복합재료 충돌 해석의 신뢰성 향상을 위한 파라미터 역추정 및 검증
  • 박지예* · 김정*†

  • This article is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

References
  • 1. Kim, K.S., and Park, S.J., “Technique Status of Carbon Fibers-reinforced Composites for Aircrafts,” Elastomers and Composites, Vol. 46, No. 2, 2011, pp. 118-124.
  •  
  • 2. Kwon, D.J., and Nam, S.Y., “A Review of Structural Batteries with Carbon Fibers,” Applied Chemistry for Engineering, Vol. 32, No. 4, 2021, pp. 361-370.
  •  
  • 3. Heimbs, S., Heller, S., Middendorf, P., Hähnel, F., and Weiße, J., “Low Velocity Impact on CFRP plates with Compressive Preload: Test and Modelling,” International Journal of Impact Engineering, Vol. 36, Issues 10-11, 2009, pp. 1182-1193.
  •  
  • 4. Cherniaev, A., Butcher, C., and Montesano, J., “Predicting the Axial Crush Response of CFRP Tubes using Three Damage-based Constitutive Models,” Thin-Walled Structures, Vol. 129, 2018, pp. 349-364.
  •  
  • 5. Feraboli, P., Wade, B., Deleo, F., Rassaian, M., Higgins, M., and Byar, A., “LS-DYNA MAT54 Modeling of the Axial Crushing of a Composite Tape Sinusoidal Specimen,” Composites Part A : Applied Science and Manufacturing, Vol. 42, Issue 11, 2011, pp. 1809-1825.
  •  
  • 6. Postel, M., Bugdayci, B., Kuster, F., and Wegener, K., “Neural Network Supported Inverse Parameter Identification for Stability Predictions in Milling,” CIRP Journal of Manufacturing Science and Technology, Vol. 29, 2020, pp. 71-87.
  •  
  • 7. Woo, M.A., Lee, S.M., Lee, K.H., Song, W.J., and Kim, J., “Application of an Artificial Neural Network Model to Obtain Constitutive Equation Parameters of Materials in High Speed Forming Process,” Transactions of Materials Processing, Vol. 27, No. 6, 2018, pp. 331-338.
  •  
  • 8. Ahmad, F., Abbassi, F., Park, M.K., Jung, J.W., and Hong, J.W., “Finite Element Analysis for the Evaluation of the Low-velocity Impact Response of a Composite Plate,” Advanced Composite Materials, Vol. 28, No. 3, 2019, pp. 271-285.
  •  
  • 9. Laaouidi, H., Tarfaoui, M., Nachtane, M., and Trihi, M., “Energy Absorption Characteristics in Hybrid Composite Materials for Marine Applications under Impact Loading: Case of Tidal Current Turbine,” International Journal of Energy Research, Vol. 45, No. 4, 2020, pp. 5894-5911.
  •  
  • 10. Hallquist, J., LS-DYNA® Keyword User’s Manual, Livermore Software Technology Corporation., Livermore, 2006.
  •  
  • 11. Smarrazzo, A., Guida, M., Marulo, F., Coppola, M., and Molitierno, R., “Failure Propagation Controlling for Frangible Composite Canister Design,” Applied Sciences, Vol. 12, No. 23, 2022, pp. 12220.
  •  
  • 12. Camargo, F.V., Pavlovic, A., Schenal, E.C., and Fragassa, C., “Explicit Stacked-Shell Modelling of Aged Basalt Fiber Reinforced Composites to Low-Velocity Impact,” Composite Structures, Vol. 256, 2021, pp. 113017.
  •  
  • 13. Menna, C., Asprone, D., Caprino, G., Lopresto, V., and Prota, A., “Numerical Simulation of Impact Tests on GFRP Composite Laminates,” International Journal of Impact Engineering, Vol. 38, Issues 8-9, 2011, pp. 677-685.
  •  
  • 14. Barclay, D., Thompson, R., and Higgins, C., “The Partial Least Squares (PLS) Approach to Causal Modelling: Personal Computer Adoption and Use as an Illustration,” Technoloy Studies, Vol. 2, No. 2, 1995, pp. 284-324.
  •  
  • 15. Lee, S.C., and Kim, J., “Acquisition of Parameters for Impact Damage Analysis of Sheet Molding Compound Based on Artificial Neural Network,” Composite Research, Vol. 34, No. 2, 2021, pp. 115-122.
  •  
  • 16. Byun, H.B., and Kim, J., “Estimating Strain Rate Dependent Parameters of Cowper-Symonds Model Using Electrohydraulic Forming and Artificial Neural Network,” Transactions of Materials Processing, Vol. 31, No. 2, 2022, pp. 81-88.
  •  
  • 17. Shin, K.H., Kim, C., Nam, S.H., Park, S.J., and Yoo, S.S., “Estimation Method of Predicted Time Series Data Based on Absolute Maximum Value,” Journal of Energy Engineering, Vol. 27, No. 4, 2018, pp. 103-110.
  •  

This Article

Correspondence to

  • Jeong Kim
  • Department of Aerospace Engineering, Pusan National University, Busan, Korea

  • E-mail: greatkj@pusan.ac.kr