Original Article
  • Fatigue Life Prediction of Laminated Composite Materials by Multiple S-N Curves and Lamina-Level Failure Criteria
  • Hangil You*, Dongwon Ha*, Young Sik Joo**, Gun Jin Yun*†

  • * Department of Aerospace Engineering, Seoul National University, Seoul 08826, Korea
    ** Aerospace Technology Research Institute, Agency for Defense

  • This article is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

References
  • 1. Kamal, M., and Rahman, M.M., “Advances in Fatigue Life Modeling: A Review,” Renewable and Sustainable Energy Reviews, Vol. 82, 2018, pp. 940-949.
  •  
  • 2. Cui, W., “A State-of-the-art Review on Fatigue Life Prediction Methods for Metal Structures,” Journal of Marine Science and Technology, Vol. 7, No. 1, 2002, pp. 43-56.
  •  
  • 3. Kim, Y.J., You, H., Kim, S.J., and Yun, G.J., “Effects of Porosity on the Fatigue Life of Polyamide 12 Considering Crack Initiation and Propagation,” Advanced Composite Materials, Vol. 29, No. 4, 2020, pp. 399-421.
  •  
  • 4. Ha, D., Kim, T., Kim, J.H., Joo, Y.S., and Yun, G., “Fatigue Life Prediction of CFRP Laminates with Stress Concentration Lamina Level Failure Criteria,” Advanced Composite Materials, 2022, pp. 1-21.
  •  
  • 5. Naderi, M., Michopoulos, J., Iyyer, N., Goel, K., and Phan, N., “Multiscale Analysis of Fatigue Crack Initiation Life for Unidirectional Composite Laminates,” Composite Structures, Vol. 213, 2019, pp. 271-283.
  •  
  • 6. Reifsnider, K.L., and Gao, Z., “A Micromechanics Model for Composites under Fatigue Loading,” International Journal of Fatigue, Vol. 13, No. 2, 1991, pp. 149-156.
  •  
  • 7. May, M., and Hallett, S.R., “An Advanced Model For Initiation and Propagation of Damage under Fatigue Loading–part I: Model Formulation,” Composite Structures, Vol. 93, No. 9, 2011, pp. 2340-2349.
  •  
  • 8. Quaresimin, M., and Carraro, P., “Damage Initiation and Evolution In Glass/epoxy Tubes Subjected to Combined Tension–torsion Fatigue Loading,” International Journal of Fatigue, Vol. 63, 2014, pp. 25-35.
  •  
  • 9. Harper, P.W., and Hallett, S.R., “A Fatigue Degradation Law for Cohesive Interface Elements–development and Application to Composite Materials,” International Journal of Fatigue, Vol. 32, No. 11, 2010, pp. 1774-1787.
  •  
  • 10. Erden, S., Sever, K., Seki, Y., and Sarikanat, M., “Enhancement of the Mechanical Properties of Glass/polyester Composites via Matrix Modification Glass/polyester Composite Siloxane Matrix Modification,” Fibers and Polymers, Vol. 11, No. 5, 2010, pp. 732-737.
  •  
  • 11. Stelzer, S., Brunner, A.J., Argüelles, A., Murphy, N., and Pinter, G., “Mode I Delamination Fatigue Crack Growth in Unidirectional Fiber Reinforced Composites: Development of a Standardized Test Procedure,” Composites Science and Technology, Vol. 72, No. 10, 2012, pp. 1102-1107.
  •  
  • 12. Gregory, J.R., and Spearing, S.M., “A Fiber Bridging Model for Fatigue Delamination in Composite Materials,” Acta Materialia, Vol. 52, No. 19, 2004, pp. 5493-5502.
  •  
  • 13. Bak, B.L.V., Sarrado, C., Turon, A., and Costa, J., “Delamination Under Fatigue Loads in Composite Laminates: A Review on the Observed Phenomenology and Computational Methods,” Applied Mechanics Reviews, Vol. 66, No. 6, 2014, pp. 060803.
  •  
  • 14. Fazlali, B., Lomov, S.V., and Swolfs, Y., “Fiber Break Model for Tension-tension Fatigue of Unidirectional Composites,” Composites Part B: Engineering, Vol. 220, 2021, pp. 108970.
  •  
  • 15. Wang, X., and Chung, D., “Fiber Breakage in Polymer-matrix Composite during Static and Fatigue Loading, Observed by Electrical Resistance Measurement,” Journal of Materials Research, Vol. 14, No. 11, 1999, pp. 4224-4229.
  •  
  • 16. Gamstedt, K., “Fatigue Damage Mechanisms in Polymer Matrix Composites,” Luleå Tekniska Universitet, 1997.
  •  
  • 17. Pakdel, H., and Mohammadi, B., “Stiffness Degradation of Composite Laminates due to Matrix Cracking and Induced Delamination during Tension-tension Fatigue,” Engineering Fracture Mechanics, Vol. 216, 2019, pp. 106489.
  •  
  • 18. Samareh-Mousavi, S.S., and Taheri-Behrooz, F., “A Novel Creep-fatigue Stiffness Degradation Model for Composite Materials,” Composite Structures, Vol. 237, 2020, pp. 111955.
  •  
  • 19. Van Paepegem, W., and Degrieck, J., “Fatigue Degradation Modelling of Plain Woven Glass/epoxy Composites,” Composites Part A: Applied Science and Manufacturing, Vol. 32, No. 10, 2001, pp. 1433-1441.
  •  
  • 20. Dutra, T.A., Ferreira, R.T.L., Resende, H.B., Blinzler, B.J., and Larsson, R., “Expanding Puck and Schürmann inter Fiber Fracture Criterion for Fiber Reinforced Thermoplastic 3D-printed Composite Materials,” Materials, Vol. 13, No. 7, 2020, pp. 1653.
  •  
  • 21. Kennedy, C.R., Brádaigh, C.M.Ó., and Leen, S.B., “A Multiaxial Fatigue Damage Model for Fibre Reinforced Polymer Composites,” Composite Structures, Vol. 106, 2013, pp. 201-210.
  •  

This Article

Correspondence to

  • Gun Jin Yun
  • Department of Aerospace Engineering, Seoul National University, Seoul 08826, Korea

  • E-mail: gunjin.yun@snu.ac.kr