Original Article
  • Manipulating Anisotropic Filler Structure in Polymer Composite for Heat Dissipating Materials: A Mini Review
  • Seong-Bae Min*, Chae Bin Kim*,**†

  • * School of Chemical Engineering, Pusan National University, Busan 46241, Korea
    ** Department of Polymer Science and Engineering, Pusan National University, Busan 46241, Korea

  • 방열소재로의 응용을 위한 고분자 복합소재 내 이방성 필러 구조 제어 연구동향
  • 민성배* · 김채빈*,**†

  • This article is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

References
  • 1. Moore, A.L., and Shi, L., “Emerging Challenges and Materials for Thermal Management of Electronics,” Materials Today, Vol. 17, No. 4, 2014, pp. 163-174.
  •  
  • 2. Han, N., Cuong, T.V., Han, M., Ryu, B.D., Chandramohan, S., Park, J.B., Kang, J.H., Park, Y.-J., Ko, K.B., Kim, H.Y., Kim, H.K., Ryu, J.H., Katharria, Y.S., Choi, C.-J., and Hong, C.-H., “Improved Heat Dissipation in Gallium Nitride Light-Emitting Diodes with Embedded Graphene Oxide Pattern,” Nature Communications, Vol. 4, 2013, pp. 1452.
  •  
  • 3. Shahil, K.M.F., and Balandin, A.A., “Graphene–Multilayer Graphene Nanocomposites as Highly Efficient Thermal Interface Materials,” Nano Letters, Vol. 12, No. 2, 2012, pp. 861-867.
  •  
  • 4. Huang, C., Qian, X., and Yang, R., “Thermal Conductivity of Polymers and Polymer Nanocomposites,” Materials Science and Engineering: R: Reports, Vol. 132, 2018, pp. 1-22.
  •  
  • 5. Kim, C.B., Lee, J., Cho, J., and Goh, M., “Thermal Conductivity Enhancement of Reduced Graphene Oxide via Chemical Defect Healing for Efficient Heat Dissipation,” Carbon, Vol. 139, 2018, pp. 386-392.
  •  
  • 6. Shin, H., Ahn, S., Kim, D., Lim, J.K., Kim, C.B., and Goh, M., “Recyclable Thermoplastic Hexagonal Boron Nitride Composites with High Thermal Conductivity,” Composites Part B: Engineering, Vol. 163, 2019, pp. 723-729.
  •  
  • 7. Lee, J., Hwang, S., Lee, S.-K., Ahn, S., Jang, S.G., You, N.-H., Kim, C.B., and Goh, M., “Optimizing Filler Network Formation in Poly(hexahydrotriaizine) for Realizing High Thermal Conductivity and Low Oxygen Permeation,” Polymer, Vol. 179, 2019, pp. 121639.
  •  
  • 8. Shin, H., Kim, C.B., Ahn, S., Kim, D., Lim, J.K., and Goh, M., “Recyclable Polymeric Composite with High Thermal Conductivity,” Composites Research, Vol. 32, No. 6, 2019, pp. 319-326.
  •  
  • 9. Shin, H., and Kim, C.B., “Impact of Filler Aspect Ratio on Oxygen Transmission and Thermal Conductivity using Hexagonal Boron Nitride-Polymer Composites,” Composites Research, Vol. 34, No. 1, 2021, pp. 63-69.
  •  
  • 10. Ghosh, B., Xu, F., and Hou, X., “Thermally Conductive Poly(ether ether ketone)/Boron Nitride Composites with Low Coefficient of Thermal Expansion,” Journal of Materials Science, Vol. 56, 2021, pp. 10326-10337.
  •  
  • 11. Feng, C.-P., Yang, L.-Y., Yang, J., Bai, L., Bao, R.-Y., Liu, Z.-Y., Yang, M.-B., Lan, H.-B., and Yang, W., “Recent Advances in Polymer-Based Thermal Interface Materials for Thermal Management: A Mini-Review,” Composites Communications, Vol. 22, 2020, pp. 100528.
  •  
  • 12. Hu, J., Huang, Y., Yao, Y., Pan, G., Sun, J., Zeng, X., Sun, R., Xu, J.-B., Song, B., and Wong, C.-P., “Polymer Composite with Improved Thermal Conductivity by Constructing a Hierarchically Ordered Three-Dimensional Interconnected Network of BN,” ACS Applied Materials & Interfaces, Vol. 9, No. 15, 2017, pp. 13544-13553.
  •  
  • 13. An, F., Li, X., Min, P., Liu, P., Jiang, Z.-G., and Yu, Z.-Z., “Vertically Aligned High-Quality Graphene Foams for Anisotropically Conductive Polymer Composites with Ultrahigh Through-Plane Thermal Conductivities,” ACS Applied Materials & Interfaces, Vol. 10, No. 20, 2018, pp. 17383-17392.
  •  
  • 14. Liu, W.C., Chou, V.H.Y., Behera, R.P., and Le Ferrand, H., “Magnetically Assisted Drop-On-Demand 3D Printing of Microstructured Multimaterial Composites,” Nature Communications, Vol. 13, 2022, pp. 5015.
  •  
  • 15. Liu, J., Li, W., Guo, Y., Zhang, H., and Zhang, Z., “Improved Thermal Conductivity of Thermoplastic Polyurethane via Aligned Boron Nitride Platelets Assisted by 3D Printing,” Composites Part A: Applied Science and Manufacturing, Vol. 120, 2019, pp. 140-146.
  •  
  • 16. Ha, H., Park, J., Ando, S., Kim, C.B., Nagai, K., Freeman, B.D., and Ellison, C.J., “Gas Permeation and Selectivity of Poly(dimethylsiloxane)/Graphene Oxide Composite Elastomer Membranes,” Journal of Membrane Science, Vol. 518, 2016, pp. 131-140.
  •  
  • 17. Kim, C.B., Jeong, K.B., Yang, B.J., Song, J.-W., Ku, B.-C., Lee, S., Lee, S.-K., and Park, C., “Facile Supramolecular Processing of Carbon Nanotubes and Polymers for Electromechanical Sensors,” Angewandte Chemie International Edition, Vol. 56, No. 51, 2017, pp. 16180-16185.
  •  
  • 18. Gong, Y., Xu, Z.-Q., Li, D., Zhang, J., Aharonovich, I., and Zhang, Y., “Two-Dimensional Hexagonal Boron Nitride for Building Next-Generation Energy-Efficient Devices,” ACS Energy Letters, Vol. 6, No. 3, 2021, pp. 985-996.
  •  
  • 19. Erb, R.M., Libanori, R., Rothfuchs, N., and Studart, A.R., “Composites Reinforced in Three Dimensions by Using Low Magnetic Fields,” Science, Vol. 335, No. 6065, 2012, pp. 199-204.
  •  
  • 20. Lei, C., Xie, Z., Wu, K., and Fu, Q., “Controlled Vertically Aligned Structures in Polymer Composites: Natural Inspiration, Structural Processing, and Functional Application,” Advanced Materials, Vol. 33, No. 49, 2021, pp. 2103495.
  •  
  • 21. Jiao, W., Shioya, M., Wang, R., Yang, F., Hao, L., Niu, Y., Liu, W., Zheng, L., Yuan, F., Wan, L., and He, X., “Improving the Gas Barrier Properties of Fe3O4/Graphite Nanoplatelet Reinforced Nanocomposites by a Low Magnetic Field Induced Alignment,” Composites Science and Technology, Vol. 99, 2014, pp. 124-130.
  •  
  • 22. Lin, Z., Liu, Y., Raghavan, S., Moon, K.-s., Sitaraman, S.K., and Wong, C.-p., “Magnetic Alignment of Hexagonal Boron Nitride Platelets in Polymer Matrix: Toward High Performance Anisotropic Polymer Composites for Electronic Encapsulation,” ACS Applied Materials & Interfaces, Vol. 5, No. 15, 2013, pp. 7633-7640.
  •  
  • 23. Ma, H., Gao, B., Wang, M., and Feng, Y., “Vertical Alignment of Carbon Fibers under Magnetic Field Driving to Enhance the Thermal Conductivity of Silicone Composites,” Polymers for Advanced Technologies, Vol. 32, No. 11, 2021, pp. 4318-4325.
  •  
  • 24. Wu, W., Ren, T., Liu, X., Davis, R., Huai, K., Cui, X., Wei, H., Hu, J., Xia, Y., Huang, S., Qiang, Z., Fu, K., Zhang, J., and Chen, Y., “Creating Thermal Conductive Pathways in Polymer Matrix by Directional Assembly of Synergistic Fillers Assisted by Electric Fields,” Composites Communications, Vol. 35, 2022, pp. 101309.
  •  
  • 25. Wu, S., Ladani, R.B., Zhang, J., Bafekrpour, E., Ghorbani, K., Mouritz, A.P., Kinloch, A.J., and Wang, C.H., “Aligning Multilayer Graphene Flakes with an External Electric Field to Improve Multifunctional Properties of Epoxy Nanocomposites,” Carbon, Vol. 94, 2015, pp. 607-618.
  •  
  • 26. Yang, J., Tang, L.-S., Bai, L., Bao, R.-Y., Liu, Z., Xie, B.-H., Yang, M.-B., and Yang, W., “Photodriven Shape-Stabilized Phase Change Materials with Optimized Thermal Conductivity by Tailoring the Microstructure of Hierarchically Ordered Hybrid Porous Scaffolds,” ACS Sustainable Chemistry & Engineering, Vol. 6, No. 5, 2018, pp. 6761-6770.
  •  
  • 27. Shao, G., Hanaor, D.A.H., Shen, X., and Gurlo, A., “Freeze Casting: From Low-Dimensional Building Blocks to Aligned Porous Structures—A Review of Novel Materials, Methods, and Applications,” Advanced Materials, Vol. 32, No. 17, 2020, pp. 1907176.
  •  
  • 28. Zeng, X., Yao, Y., Gong, Z., Wang, F., Sun, R., Xu, J., and Wong, C.-P., “Ice-Templated Assembly Strategy to Construct 3D Boron Nitride Nanosheet Networks in Polymer Composites for Thermal Conductivity Improvement,” Small, Vol. 11, No. 46, 2015, pp. 6205-6213.
  •  
  • 29. Han, J., Du, G., Gao, W., and Bai, H., “An Anisotropically High Thermal Conductive Boron Nitride/Epoxy Composite Based on Nacre-Mimetic 3D Network,” Advanced Functional Materials, Vol. 29, No. 13, 2019, pp. 1900412.
  •  
  • 30. Dai, W., Lv, L., Lu, J., Hou, H., Yan, Q., Alam, F.E., Li, Y., Zeng, X., Yu, J., Wei, Q., Xu, X., Wu, J., Jiang, N., Du, S., Sun, R., Xu, J., Wong, C.-P., and Lin, C.-T., “A Paper-Like Inorganic Thermal Interface Material Composed of Hierarchically Structured Graphene/Silicon Carbide Nanorods,” ACS Nano, Vol. 13, No. 2, 2019, pp. 1547-1554.
  •  
  • 31. Min, S.-B., Kim, M., Hyun, K., Ahn, C.-W., and Kim, C.B., “Thermally Conductive 2D Filler Orientation Control in Polymer Using Thermophoresis,” Polymer Testing, Vol. 117, 2023, pp. 107838.
  •  
  • 32. Kim, C.B., Janes, D.W., McGuffin, D.L., and Ellison, C.J., “Surface Energy Gradient Driven Convection for Generating Nanoscale and Microscale Patterned Polymer Films Using Photosensitizers,” Journal of Polymer Science Part B: Polymer Physics, Vol. 52, No. 18, 2014, pp. 1195-1202.
  •  
  • 33. Kim, C.B., Janes, D.W., Zhou, S.X., Dulaney, A.R., and Ellison, C.J., “Bidirectional Control of Flow in Thin Polymer Films by Photochemically Manipulating Surface Tension,” Chemistry of Materials, Vol. 27, No. 13, 2015, pp. 4538-4545.
  •  
  • 34. Kim, C.B., Wistrom, J.C., Ha, H., Zhou, S.X., Katsumata, R., Jones, A.R., Janes, D.W., Miller, K.M., and Ellison, C.J., “Marangoni Instability Driven Surface Relief Grating in an Azobenzene-Containing Polymer Film,” Macromolecules, Vol. 49, No. 18, 2016, pp. 7069-7076.
  •  
  • 35. Li, C.H., and Peterson, G.P., “Experimental Studies of Natural Convection Heat Transfer of Al2O3/DI Water Nanoparticle Suspensions (Nanofluids),” Advances in Mechanical Engineering, Vol. 2, 2010, pp. 742739.
  •  
  • 36. Tan, Z., Yang, M., and Ripoll, M., “Anisotropic Thermophoresis,” Soft Matter, Vol. 13, No. 40, 2017, pp. 7283-7291.
  •  
  • 37. Piazza R., “Thermophoresis: Moving Particles with Thermal Gradients,” Soft Matter, Vol. 4, No. 9, 2008, pp. 1740-1744.
  •  
  • 38. Gittus, O.R., Olarte-Plata, J.D., and Bresme, F., “Thermal Orientation and Thermophoresis of Anisotropic Colloids: The Role of the Internal Composition,” The European Physical Journal E, Vol. 42, No. 7, 2019, pp. 90.
  •  

This Article

Correspondence to

  • Chae Bin Kim
  • * School of Chemical Engineering, Pusan National University, Busan 46241, Korea
    ** Department of Polymer Science and Engineering, Pusan National University, Busan 46241, Korea

  • E-mail: cbkim@pusan.ac.kr