Original Article
  • Effect of Grafted Biobased Acrylics on the Mechanical Properties of Polylactic Acid (PLA)/Starch Eco-Friendly Composite
  • Marcela Godoy*, Jonghwan Suhr**†

  • * Polymer Science and Engineering, Sungkyunkwan University
    ** Department of Mechanical Engineering

  • This article is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

References
  • 1. Mansour, G., Zoumakia, M., Marinopouloub, A., Tzetzisc, D., Prevezanosb, M., and Raphaelidesb, S.N., “Characterization and Properties of Non-granular Thermoplastic Starch - Clay Biocomposite Films”, Carbohydrate Polymers, Vol. 245, 2020, 116829.
  •  
  • 2. Jung, J., Kim, S., Kim, S., Park, J., and Lee, W., “Research on the Development of the Properties of PLA Composites for Automotive Interior Parts”, Composites Research, Vol. 24, No. 3, 2011, pp. 9-13.
  •  
  • 3. Roh, J.U., and Lee, W.I., “Manufacture of Continuous Glass Fiber Reinforced Polylactic Acid (PLA) Composite and Its Properties”, Composites Research, Vol. 26, No. 4, 2013, pp. 230-234.
  •  
  • 4. Yu, M., Zheng, Y., and Tian, J., “Study on the Biodegradability of Modified Starch/Polylactic Acid (PLA) Composite Materials”, Royal Society of Chemistry Advances, Vol. 10, 2020, 26298.
  •  
  • 5. Momeni, S., Ghomi, R., Shakiba, M., Shafiei-Navid, S., Abdouss, M., Bigham, A., Khosravi, F., Ahmadi, Z., Faraji, M., Abdouss, H., and Ramakrishna, S.,“The Effect of Poly(ethylene glycol) Emulation on the Degradation of PLA/Starch Composites”, Polymers, Vol. 13, 2021, 1019.
  •  
  • 6. Çankaya, N., “Synthesis of Graft Copolymers onto Starch and Its Semiconducting Properties”, Results in Physics, Vol. 6, 2016, pp. 538-542.
  •  
  • 7. Weerapoprasit, C., and Prachayawarakorn, J., “Characterization and Properties of Biodegradable Thermoplastic Grafted Starch Films by Different Contents of Methacrylic Acid”, International Journal of Biological Macromolecules, Vol. 123, 2019, pp. 657-663.
  •  
  • 8. Zuo, Y., He, X., Li, P., Li, W., and Wu, Y., “Preparation and Characterization of Hydrophobically Grafted Starches by In Situ Solid Phase Polymerization”, Polymers, Vol. 11, 2019, 72.
  •  
  • 9. Bunkerd, R., Molloy, R., Somsunan, R., Punyodom, W., Topham, P., and Tighe, B., “Synthesis and Characterization of Chemically-Modified Cassava Starch Grafted with Poly(2-Ethylhexyl Acrylate) for Blending with Poly(Lactic Acid)”, Starch- Stärke, Vol. 70, 2018, 1800093.
  •  
  • 10. Adorna, J., Aleman, C., Gonzaga, I., Pangasinan, J.,Sisican, K., Dang, V.,Doong, R., Ventura, R., and Ventura, J., “Effect of Lauric Acid on the Thermal and Mechanical Properties of Polyhydroxybutyrate (PHB)/Starch Composite Biofilms”, International Journal of Polymer Science, Vol. 2020, 2020, 7947109.
  •  
  • 11. Sun, Y., Ma, Z., Xu, X., Liu, X., Liu, L., Huang, G., Liu, L., Wang, H., and Song, P., “Grafting Lignin with Bioderived Polyacrylates for Low-Cost, Ductile, and Fully Biobased Poly(lactic acid) Composites”, ACS Sustainable Chemistry & Engineering, Vol. 8, No. 5, 2020, pp. 2267-2276.
  •  
  • 12. Kaur, K., Jindal, R., Maiti, M., and Mahajan, S., “Studies on the Properties and Biodegradability of PVA/Trapa Natans Starch (N-st) Composite Films and PVA/N-st-g-poly (EMA) Composite Films” International Journal of Biological Macromolecules, Vol. 123, 2019, pp. 826-836.
  •  
  • 13. Chen, C., Tian, Y., Li, F., Hu, H., Wang, K., Kong, Z., Ying, W., Zhang, R., and Zhu, J., “Toughening Polylactic Acid by a Biobased Poly (Butylene 2,5-Furandicarboxylate)‑b‑Poly(Ethylene Glycol) Copolymer: Balanced Mechanical Properties and Potential Biodegradability”, Biomacromolecules, Vol. 22, 2021, pp. 374-385.
  •  
  • 14. Zong, E., Liu, X., Liu, L., Wang, J., Song, P., Ma, Z., Ding, J., and Fu, S., “Graft Polymerization of Acrylic Monomers onto Lignin with CaCl2-H2O2 as Initiator: Preparation, Mechanism, Characterization, and Application in Poly(lactic acid)”, ACS Sustainable Chemistry & Engineering, Vol. 6, 2018, pp. 337-348.
  •  
  • 15. Wang, L., Shen, J., Men, Y., Wu, Y., Peng, Q., Wang, X., Yang, R., Mahmood, K., and Liu, Z., “Corn Starch-based Graft Copolymers Prepared via ATRP at the Molecular Level”, Polymer Chemistry, Vol. 6, 2015, pp. 3480-3488.
  •  
  • 16. Lu, C., Wang, C., Yu, J., Wang, J., and Chu, F., “Metal-free ATRP ‘Grafting from’ Technique for Renewable Cellulose Graft Copolymers”, Green Chemistry, Vol. 21, 2019, pp. 2759-2770.
  •  
  • 17. Cazotti, J., Fritz, A., Garcia-Valdez, O., Smeets, N., Dubé, M., and Cunningham, M., “Grafting from Starch Nanoparticles with Synthetic Polymers via Nitroxide-Mediated Polymerization”, Macromolecular Rapid Communications, Vol. 40, 2019, 1800834.
  •  

This Article

Correspondence to

  • Jonghwan Suhr
  • Department of Mechanical Engineering

  • E-mail: suhr@skku.edu