Special Issue
  • Charge Storage Behavior of the Carbons Derived from Polyvinylidene Chloride-resin and Polyvinylidene Fluoride in Different pH Electrolytes
  • Sang-Eun Chun*,**†

  • * School of Materials Science and Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
    ** Department of Hydrogen & Renewable Energy, Kyungpook National University, Daegu 41566, Republic of Korea

  • 다른 pH의 전해질에서 polyvinylidene chloride-resin와 polyvinylidene fluoride로부터 합성된 다공성 탄소의 전하 저장 거동
  • 전상은*,**†

  • This article is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

References
  • 1. E. Frackowiak, F. Béguin, Supercapacitors: Materials, Systems and Applications, Poznan: Wiley-VCH Verlag GmbH & Co, 2013.
  •  
  • 2. B.E. Conway, “Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications,” Springer Science & Business Media, 2013.
  •  
  • 3. A. Borenstein, O. Hanna, R. Attias, S. Luski, T. Brousse, and D. Aurbach, “Carbon-based Composite Materials for Supercapacitor Electrodes: A Review,” Journal of Materials Chemistry A, Vol. 5, 2017, pp. 12653-12672.
  •  
  • 4. W. Zuo, R. Li, C. Zhou, Y. Li, J. Xia, and J. Liu, “Battery‐supercapacitor Hybrid Devices: Recent Progress and Future Prospects,” Advanced Science, Vol. 4, 2017, pp. 1600539.
  •  
  • 5. Z.S. Iro, C. Subramani, and S. Dash, “A Brief Review on Electrode Materials for Supercapacitor,” International Journal of Electrochemical Science, Vol. 11, 2016, pp. 10628-10643.
  •  
  • 6. R. Yan, M. Antonietti, and M. Oschatz, “Toward the Experimental Understanding of the Energy Storage Mechanism and Ion Dynamics in Ionic Liquid Based Supercapacitors,” Advanced Energy Materials, Vol. 8, 2018, pp. 1800026.
  •  
  • 7. H. Marsh and F.R. Reinoso, “Activated Carbon,” Elsevier, 2006.
  •  
  • 8. K. Kinoshita, Carbon: Electrochemical and Physicochemical Properties, Wiley, US, 1988.
  •  
  • 9. E. Frackowiak, “Carbon Materials for Supercapacitor Application,” Physical Chemistry Chemical Physics, Vol. 9, 2007, pp. 1774-1785.
  •  
  • 10. I.-S. Son, Y. Oh, S.-H. Yi, W.B. Im, and S.-E. Chun, “Facile Fabrication of Mesoporous Carbon from Mixed Polymer Precursor of PVDF and PTFE for High-power Supercapacitors,” Carbon, Vol. 159, 2020, pp. 283-291.
  •  
  • 11. B. Hwang and S.-E. Chun, “Fabrication of Mesoporous Carbon from Polyvinylidene Chloride (PVDC)-resin Precursor with Mg (OH) 2 Template for Supercapacitor Electrode,” Journal of the Korean Institute of Surface Engineering, Vol. 52, 2019, pp. 326-333.
  •  
  • 12. I.-S. Son, S.-H. Yi, and S.-E. Chun, “Synthesis of Hydrophilic Hierarchical Carbon via Autonomous SiO2 Etching by Fluorinated Polymers for Aqueous Supercapacitor,” International Journal of Energy Research, Vol. 45, 2021, pp. 13836-13850.
  •  
  • 13. B. Hwang, S.-H. Yi, and S.-E. Chun, “Dual-role of ZnO as a Templating and Activating Agent to Derive Porous Carbon from Polyvinylidene Chloride (PVDC) Resin,” Chemical Engineering Journal, Vol. 422, 2021, pp. 130047.
  •  
  • 14. Y. Yang, A. Centrone, L. Chen, F. Simeon, T.A. Hatton, and G.C. Rutledge, “Highly Porous Electrospun Polyvinylidene Fluoride (PVDF)-based Carbon Fiber,” Carbon, Vol. 49, 2011, pp. 3395-3403.
  •  
  • 15. K.-S. Kim and S.-J. Park, “Synthesis of Nitrogen Doped Microporous Carbons Prepared by Activation-free Method and Their High Electrochemical Performance,” Electrochimica Acta, Vol. 56, 2011, pp. 10130-10136.
  •  
  • 16. C. Wang, B. Yan, J. Zheng, L. Feng, Z. Chen, Q. Zhang, T. Liao, J. Chen, S. Jiang, and C. Du, “Recent Progress in Template-assisted Synthesis of Porous Carbons for Supercapacitors,” Advanced Powder Materials, Vol. 1, 2021, pp. 100018.
  •  
  • 17. A. Hossain, P. Bandyopadhyay, P.S. Guin, and S. Roy, “Recent Developed Different Structural Nanomaterials and Their Performance for Supercapacitor Application,” Applied Materials Today, Vol. 9, 2017, pp. 300-313.
  •  
  • 18. C.A. Toles, W.E. Marshall, and M.M. Johns, “Surface Functional Groups on Acid-activated Nutshell Carbons,” Carbon, Vol. 37, 1999, pp. 1207-1214.
  •  
  • 19. Y.J. Oh, J.J. Yoo, Y.I. Kim, J.K. Yoon, H.N. Yoon, J.-H. Kim, and S.B. Park, “Oxygen Functional Groups and Electrochemical Capacitive Behavior of Incompletely Reduced Graphene Oxides as a Thin-film Electrode of Supercapacitor,” Electrochimica Acta, Vol. 116, 2014, pp. 118-128.
  •  
  • 20. B. Han, G. Cheng, Y. Wang, and X. Wang, “Structure and Functionality Design of Novel Carbon and Faradaic Electrode Materials for High-performance Capacitive Deionization,” Chemical Engineering Journal, Vol. 360, 2019, pp. 364-384.
  •  
  • 21. Y. Zhao, A. Wang, L. Shen, L. Xiao, and L. Hou, “Carbohydrate Assisted Preparation of N-doped Hierarchically Porous Carbons from Melamine Resin via High Internal Phase Emulsion Template,” Microporous and Mesoporous Materials, Vol. 341, 2022, pp. 112039.
  •  
  • 22. R. Jansen and H. Van Bekkum, “XPS of Nitrogen-containing Functional Groups on Activated Carbon,” Carbon, Vol. 33, 1995, pp. 1021-1027.
  •  
  • 23. B. Xu, S. Hou, M. Chu, G. Cao, and Y. Yang, “An Activation-free Method for Preparing Microporous Carbon by the Pyrolysis of Poly(vinylidene fluoride),” Carbon, Vol. 48, 2010, pp. 2812-2814.
  •  
  • 24. B. Xu, F. Wu, S. Chen, G. Cao, and Z. Zhou, “A Simple Method for Preparing Porous Carbon by PVDC Pyrolysis,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 316, 2008, pp. 85-88.
  •  
  • 25. X. Chen, J. Zhang, B. Zhang, S. Dong, X. Guo, X. Mu, and B. Fei, “A Novel Hierarchical Porous Nitrogen-doped Carbon Derived from Bamboo Shoot for High Performance Supercapacitor,” Scientific Reports, Vol. 7, 2017, pp. 1-11.
  •  
  • 26. Y.-H. Lee, K.-H. Chang, and C.-C. Hu, “Differentiate the Pseudocapacitance and Double-layer Capacitance Contributions for Nitrogen-doped Reduced Graphene Oxide in Acidic and Alkaline Electrolytes,” Journal of Power Sources, Vol. 227, 2013, pp. 300-308.
  •  
  • 27. E. Calvo, N. Rey-Raap, A. Arenillas, and J. Menéndez, “The Effect of the Carbon Surface Chemistry and Electrolyte pH on the Energy Storage of Supercapacitors,” RSC Advances, Vol. 4, 2014, pp. 32398-32404.
  •  
  • 28. G. Ferrero, A. Fuertes, and M. Sevilla, “From Soybean Residue to Advanced Supercapacitors,” Scientific Reports, Vol. 5, 2015, pp. 1-13.
  •  
  • 29. M.T. Huynh, C.W. Anson, A.C. Cavell, S.S. Stahl, and S. Hammes-Schiffer, “Quinone 1 e and 2 e/2 H+ Reduction Potentials: Identification and Analysis of Deviations from Systematic Scaling Relationships,” Journal of the American Chemical Society, Vol. 138, 2016, pp. 15903-15910.
  •  
  • 30. L. Eliad, E. Pollak, N. Levy, G. Salitra, A. Soffer, and D. Aurbach, “Assessing Optimal Pore-to-ion Size Relations in the Design of Porous Poly(vinylidene chloride) Carbons for EDL Capacitors,” Applied Physics A, Vol.82, 2006, pp. 607-613.
  •  
  • 31. Y. He, Y. Zhang, X. Li, Z. Lv, X. Wang, Z. Liu, and X. Huang, “Capacitive Mechanism of Oxygen Functional Groups on Carbon Surface in Supercapacitors,” Electrochimica Acta, Vol. 282, 2018, pp. 618-625.
  •  
  • 32. C. Zhong, Y. Deng, W. Hu, J. Qiao, L. Zhang, and J. Zhang, “A Review of Electrolyte Materials and Compositions for Electrochemical Supercapacitors,” Chemical Society Reviews, Vol. 44, 2015, pp. 7484-7539.
  •  
  • 33. J.G. Speight, Lange’s Handbook of Chemistry, McGraw-Hill Education, 2017.
  •  

This Article

Correspondence to

  • Sang-Eun Chun
  • * School of Materials Science and Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
    ** Department of Hydrogen & Renewable Energy, Kyungpook National University, Daegu 41566, Republic of Korea

  • E-mail: Sangeun@knu.ac.kr