Special Issue
  • Recent Advances on TENG-based Soft Robot Applications
  • Zhengbing Ding*, Dukhyun Choi*†

  • School of Mechanical Engineering, Sungkyunkwan University

  • 정전 발전 기반 소프트 로봇 응용 최신 기술
  • 성정빈* · 최덕현*†

  • This article is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

References
  • 1. Wang, Z.L., “Triboelectric Nanogenerators as New Energy Technology and Self-powered Sensors-principles, Problems and Perspectives,” Faraday Discussions, Vol. 176, 2014, pp. 447-458.
  •  
  • 2. Liu, D., Zhou, L., Wang, Z.L., and Wang, J., “Triboelectric Nanogenerator: from Alternating Current to Direct Current,” Iscience, Vol. 24, No. 1, 2021, pp. 102018.
  •  
  • 3. Fabish, T.J., and Duke, C.B., “Molecular Charge States and Contact Charge Exchange in Polymers,” Journal of Applied Physics, Vol. 48, No. 10, 1977, pp. 4256-4266.
  •  
  • 4. Yang, Y., Lin, L., Zhang, Y., Jing, Q., Hou, T.-C., and Wang, Z.L., “Self-powered Magnetic Sensor Based on a Triboelectric Nanogenerator,” ACS Nano, Vol. 6, No. 11, 2012, pp. 10378-10383.
  •  
  • 5. Wang, S., Lin, L., and Wang, Z.L., “Nanoscale Triboelectric-effect-enabled Energy Conversion for Sustainably Powering Portable Electronics,” Nano Letters, Vol. 12, No. 12, 2012, pp. 6339-6346.
  •  
  • 6. Fan, F.-R., Lin, L., Zhu, G., Wu, W., Zhang, R., and Wang, Z.L., “Transparent Triboelectric Nanogenerators and Self-powered Pressure Sensors Based on Micropatterned Plastic Films,” Nano Letters, Vol. 12, No. 6, 2012, pp. 3109-3114.
  •  
  • 7. Fan, F.-R., Tian, Z.-Q., and Wang, Z.L., “Flexible Triboelectric Generator,” Nano Energy, Vol. 1, No. 2, 2012, pp. 328-334.
  •  
  • 8. Wu, C., Wang, A., Ding, W., Guo, H., and Wang, Z., “Triboelectric Nanogenerator: A Foundation of the Energy for the New Era”, Advanced Energy Materials, Vol. 9, 2019, 1802906.
  •  
  • 9. Wang, Z., “Triboelectric Nanogenerator (TENG)—Sparking an Energy and Sensor Revolution”, Advanced Energy Materials, Vol. 10, 2020, pp. 2000137.
  •  
  • 10. Wang, Z., and Jian, Y., “Heat Transport of Electrokinetic Flow in Slit Soft Nanochannels,” Micromachines, Vol. 10, No. 1, 2019, pp. 34.
  •  
  • 11. Cao, B., Wang, P., Rui, P., Wei, X., Wang, Z., Yang, Y., Tu, X., Chen, C., Wang, Z., and Yang, Z., “Broadband and Output‐Controllable Triboelectric Nanogenerator Enabled by Coupling Swing‐Rotation Switching Mechanism with Potential Energy Storage/Release Strategy for Low‐Frequency Mechanical Energy Harvesting,” Advanced Energy Materials, Vol. 12, 2022, 2202627.
  •  
  • 12. Jiang, D., Liu, G., Li, W., Bu, T., Wang, Y., Zhang, Z., Pang, Y., Xu, S., Yang, H., and Zhang, C., “A Leaf-shaped Triboelectric Nanogenerator for Multiple Ambient Mechanical Energy Harvesting,” IEEE Transactions on Power Electronics, Vol. 35, No. 1, 2019, pp. 25-32.
  •  
  • 13. Chen, B., Yang, Y., and Wang, Z.L., “Scavenging Wind Energy by Triboelectric Nanogenerators,” Advanced Energy Materials, Vol. 8, No. 10, 2018, pp. 1702649.
  •  
  • 14. Xi, F., Pang, Y., Liu, G., Wang, S., Li, W., Zhang, C., and Wang, Z.L., “Self-powered Intelligent Buoy System by Water Wave Energy for Sustainable and Autonomous Wireless Sensing and Data Transmission,” Nano Energy, Vol. 61, 2019, pp. 1-9.
  •  
  • 15. Wang, Z.L., Jiang, T., and Xu, L., “Toward the Blue Energy Dream by Triboelectric Nanogenerator Networks,” Nano Energy, Vol. 39, 2017, pp. 9-23.
  •  
  • 16. Khan, U., and Kim, S.-W., “Triboelectric Nanogenerators for Blue Energy Harvesting,” ACS Nano, Vol. 10, No. 7, 2016, pp. 6429-6432.
  •  
  • 17. Zhao, J., Zhen, G., Liu, G., Bu, T., Liu, W., Fu, X., Zhang, P., Zhang, C., and Wang, Z.L., “Remarkable Merits of Triboelectric Nanogenerator than Electromagnetic Generator for Harvesting Small-amplitude Mechanical Energy,” Nano Energy, Vol. 61, 2019, pp. 111-118.
  •  
  • 18. Askari, H., Khajepour, A., Khamesee, M.B., Saadatnia, Z., and Wang, Z.L., “Piezoelectric and Triboelectric Nanogenerators: Trends and Impacts,” Nano Today, Vol. 22, 2018, pp. 10-13.
  •  
  • 19. Liu, Y., Chen, B., Li, W., Zu, L., Tang, W., and Wang, Z.L., “Bioinspired Triboelectric Soft Robot Driven by Mechanical Energy,” Advanced Functional Materials, Vol. 31, No. 38, 2021, pp. 2104770.
  •  
  • 20. Ding, W., Wang, A.C., Wu, C., Guo, H., and Wang, Z.L., “Human-machine Interfacing Enabled by Triboelectric Nanogenerators and Tribotronics,” Advanced Materials Technologies, Vol. 4, No. 1, 2019, pp. 1800487.
  •  
  • 21. Dharmasena, R., Jayawardena, K., Saadi, Z., Yao, X., Bandara, R., Zhao, Y., and Silva, S.R.P., “Energy Scavenging and Powering E-skin Functional Devices,” Proceedings of the IEEE, Vol. 107, No. 10, 2019, pp. 2118-2136.
  •  
  • 22. Gunawardhana, K.S.D., Wanasekara, N.D., and Dharmasena, R.I.G., “Towards Truly Wearable Systems: Optimizing and Scaling up Wearable Triboelectric Nanogenerators,” Iscience, Vol. 23, No. 8, 2020, pp. 101360.
  •  
  • 23. Yang, H., Fan, F.R., Xi, Y., and Wu, W., “Design and Engineering of High‐performance Triboelectric Nanogenerator for Ubiquitous Unattended Devices,” EcoMat, Vol. 3, No. 2, 2021, pp. e12093.
  •  
  • 24. Chen, H., Song, Y., Guo, H., Miao, L., Chen, X., Su, Z., and Zhang, H., “Hybrid Porous Micro Structured Finger Skin Inspired Self-powered Electronic Skin System for Pressure Sensing and Sliding Detection,” Nano Energy, Vol. 51, 2018, pp. 496-503.
  •  
  • 25. Xiao, X., Zhang, X., Wang, S., Ouyang, H., Chen, P., Song, L., Yuan, H., Ji, Y., Wang, P., and Li, Z., “Honeycomb Structure Inspired Triboelectric Nanogenerator for Highly Effective Vibration Energy Harvesting and Self‐powered Engine Condition Monitoring,” Advanced Energy Materials, Vol. 9, No. 40, 2019, pp. 2070035.
  •  
  • 26. Li, X., Mu, J., He, J., Fan, X., Zhang, Q., Hou, X., Geng, W., Zhang, W., and Chou, X., “Bioinspired Helical Triboelectric Nanogenerators for Energy Conversion of Motion,” Advanced Materials Technologies, Vol. 5, No. 4, 2020, pp. 1900917.
  •  
  • 27. Zhou, Q., Lee, K., Kim, K.N., Park, J.G., Pan, J., Bae, J., Baik, J.M., and Kim, T., “High Humidity-and Contamination-resistant Triboelectric Nanogenerator with Superhydrophobic Interface,” Nano Energy, Vol. 57, 2019, pp. 903-910.
  •  
  • 28. Yoo, D., Park, S.-C., Lee, S., Sim, J.-Y., Song, I., Choi, D., Lim, H., and Kim, D.S., “Biomimetic Anti-reflective Triboelectric Nanogenerator for Concurrent Harvesting of Solar and Raindrop Energies,” Nano Energy, Vol. 57, 2019, pp. 424-431.
  •  
  • 29. Yao, G., Xu, L., Cheng, X., Li, Y., Huang, X., Guo, W., Liu, S., Wang, Z.L., and Wu, H., “Bioinspired Triboelectric Nanogenerators as Self‐powered Electronic Skin for Robotic Tactile Sensing,” Advanced Functional Materials, Vol. 30, No. 6, 2020, pp. 1907312.
  •  
  • 30. Zhang, J.-H., Li, Y., Du, J., Hao, X., and Wang, Q., “Bio-inspired hydrophobic/cancellous/hydrophilic Trimurti PVDF Mat-based Wearable Triboelectric Nanogenerator Designed by Self-assembly of Electro-pore-creating,” Nano Energy, Vol. 61, 2019, pp. 486-495.
  •  
  • 31. Yu, B., Yu, H., Huang, T., Wang, H., and Zhu, M., “A Biomimetic Nanofiber-based Triboelectric Nanogenerator with an Ultrahigh Transfer Charge Density,” Nano Energy, Vol. 48, 2018, pp. 464-470.
  •  
  • 32. Kim, H.J., Kim, J.H., Jun, K.W., Kim, J.H., Seung, W.C., Kwon, O.H., Park, J.Y., Kim, S.W., and Oh, I.K., “Silk Nanofiber‐networked Bio‐triboelectric Generator: Silk Bio‐TEG,” Advanced Energy Materials, Vol. 6, No. 8, 2016, pp. 1502329.
  •  
  • 33. Chen, B.D., Tang, W., He, C., Deng, C.R., Yang, L.J., Zhu, L.P., Chen, J., Shao, J.J., Liu, L., and Wang, Z.L., “Water Wave Energy Harvesting and Self-powered Liquid-surface Fluctuation Sensing Based on Bionic-jellyfish Triboelectric Nanogenerator,” Materials Today, Vol. 21, No. 1, 2018, pp. 88-97.
  •  
  • 34. Lai, Y.C., Deng, J., Niu, S., Peng, W., Wu, C., Liu, R., Wen, Z., and Wang, Z.L., “Electric Eel‐skin‐inspired Mechanically Durable and Super‐stretchable Nanogenerator for Deformable Power Source and Fully Autonomous Conformable Electronic‐skin Applications,” Advanced Materials, Vol. 28, No. 45, 2016, pp. 10024-10032.
  •  
  • 35. Wang, F., Ren, Z., Nie, J., Tian, J., Ding, Y., and Chen, X., “Self‐powered Sensor Based on Bionic Antennae Arrays and Triboelectric Nanogenerator for Identifying Noncontact Motions,” Advanced Materials Technologies, Vol. 5, No. 1, 2020, pp. 1900789.
  •  
  • 36. Dong, K., Wu, Z., Deng, J., Wang, A.C., Zou, H., Chen, C., Hu, D., Gu, B., Sun, B., and Wang, Z.L., “A Stretchable Yarn Embedded Triboelectric Nanogenerator as Electronic Skin for Biomechanical Energy Harvesting and Multifunctional Pressure Sensing,” Advanced Materials, Vol. 30, No. 43, 2018, pp. 1804944.
  •  
  • 37. Bu, T., Xiao, T., Yang, Z., Liu, G., Fu, X., Nie, J., Guo, T., Pang, Y., Zhao, J., Xi, F., Zhang, C., and Wang, Z.L., “Stretchable Triboelectric-photonic Smart Skin for Tactile and Gesture Sensing,” Advanced Materials, Vol. 30, No. 16, 2018, pp. 1800066.
  •  
  • 38. Pu, X., Liu, M., Chen, X., Sun, J., Du, C., Zhang, Y., Zhai, J., Hu, W., and Wang, Z.L., “Ultrastretchable, Transparent Triboelectric Nanogenerator as Electronic Skin for Biomechanical Energy Harvesting and Tactile Sensing,” Science Advances, Vol. 3, No. 5, 2017, pp. e1700015.
  •  
  • 39. Jang, J., Lee, J., Jang, J.H., and Choi, H., “A Triboelectric‐based Artificial Basilar Membrane to Mimic Cochlear Tonotopy,” Advanced Healthcare Materials, Vol. 5, No. 19, 2016, pp. 2481-2487.
  •  
  • 40. Liu, Y., Zhong, J., Li, E., Yang, H., Wang, X., Lai, D., Chen, H., and Guo, T., “Self-powered Artificial Synapses Actuated by Triboelectric Nanogenerator,” Nano Energy, Vol. 60, 2019, pp. 377-384.
  •  
  • 41. Wu, C., Kim, T.W., Park, J.H., Koo, B., Sung, S., Shao, J., Zhang, C., and Wang, Z.L., “Self-powered Tactile Sensor with Learning and Memory,” ACS Nano, Vol. 14, No. 2, 2019, pp. 1390-1398.
  •  
  • 42. Li, D., Niu, D., Ye, G., Lei, B., Jiang, W., Luo, F., Chen, J., Li, X., Qu, S., and Liu, H., “Intergrated Shape Memory Alloys Soft Actuators with Periodic and Inhomogeneous Deformations by Modulating Elastic Tendon Structures,” Advanced Engineering Materials, Vol. 22, No. 12, 2020, pp. 2000640.
  •  
  • 43. Li, H., Yao, J., Zhou, P., Chen, X., Xu, Y., and Zhao, Y., “High-force Soft Pneumatic Actuators Based on Novel Casting Method for Robotic Applications,” Sensors and Actuators A: Physical, Vol. 306, 2020, pp. 111957.
  •  
  • 44. Sivaperuman Kalairaj, M., Cai, C.J., and Ren, H., “Untethered Origami Worm Robot with Diverse Multi-Leg Attachments and Responsive Motions under Magnetic Actuation,” Robotics, Vol. 10, No. 4, 2021, pp. 118.
  •  
  • 45. Wani, O.M., Zeng, H., and Priimagi, A., “A Light-driven Artificial Flytrap,” Nature Communications, Vol. 8, No. 1, 2017, pp. 1-7.
  •  
  • 46. Tang, Y., Chi, Y., Sun, J., Huang, T.-H., Maghsoudi, O. H., Spence, A., Zhao, J., Su, H., and Yin, J., “Leveraging Elastic Instabilities for Amplified Performance: Spine-inspired High-speed and High-force Soft Robots,” Science Advances, Vol. 6, No. 19, 2020, pp. eaaz6912.
  •  
  • 47. Burroughs, M.L., Beauwen Freckleton, K., Abbott, J.J., and Minor, M.A., “A Sarrus-based Passive Mechanism for Rotorcraft Perching,” Journal of Mechanisms and Robotics, Vol. 8, No. 1, 2016,
  •  
  • 48. Ilievski, F., Mazzeo, A.D., Shepherd, R.F., Chen, X., and Whitesides, G.M., “Soft Robotics for Chemists,” Angewandte Chemie, Vol. 123, No. 8, 2011, pp. 1930-1935.
  •  
  • 49. Lu, H., Hong, Y., Yang, Y., Yang, Z., and Shen, Y., “Battery‐less Soft Millirobot that Can Move, Sense, and Communicate Remotely by Coupling the Magnetic and Piezoelectric Effects,” Advanced Science, Vol. 7, No. 13, 2020, pp. 2000069.
  •  
  • 50. Yue, Y., Wang, Q., Ma, Z., Wu, Z., Zhang, X., Li, D., Shi, Y., and Su, B., “Neuron-Inspired Soft Robot Teams and Their Non-Contact Electric Signal Transmission Based on Electromagnetic Induction,” Soft Robotics, 2022.
  •  
  • 51. Ebrahimi, N., Bi, C., Cappelleri, D. J., Ciuti, G., Conn, A. T., Faivre, D., Habibi, N., Hošovský, A., Iacovacci, V., Khalil, I. S., Magdanz, V., Mesra, S., Pawashe, C., Rashififar, R., Soto-Rodriguez, P.E.D., Fekete, Z., and Jafari, A., “Magnetic Actuation Methods in Bio/soft Robotics,” Advanced Functional Materials, Vol. 31, No. 11, 2021, pp. 2005137.
  •  
  • 52. Meng, J., Li, H., Zhao, L., Lu, J., Pan, C., Zhang, Y., and Li, Z., “Triboelectric Nanogenerator Enhanced Schottky Nanowire Sensor for Highly Sensitive Ethanol Detection,” Nano Letters, Vol. 20, No. 7, 2020, pp. 4968-4974.
  •  
  • 53. Lei, R., Shi, Y., Ding, Y., Nie, J., Li, S., Wang, F., Zhai, H., Chen, X., and Wang, Z.L., “Sustainable High-voltage Source Based on Triboelectric Nanogenerator with a Charge Accumulation Strategy,” Energy & Environmental Science, Vol. 13, No. 7, 2020, pp. 2178-2190.
  •  
  • 54. Yang, D., Kong, X., Ni, Y., Ren, Z., Li, S., Nie, J., Chen, X., and Zhang, L., “Ionic Polymer-metal Composites Actuator Driven by the Pulse Current Signal of Triboelectric Nanogenerator,” Nano energy, Vol. 66, 2019, pp. 104139.
  •  
  • 55. Li, Z., Zheng, Q., Wang, Z.L., and Li, Z., “Nanogenerator-based Self-powered Sensors for Wearable and Implantable Electronics,” Research, Vol. 2020, 2020, pp. 1-25.
  •  
  • 56. Rong, X., Zhao, J., Guo, H., Zhen, G., Yu, J., Zhang, C., and Dong, G., “Material Recognition Sensor Array by Electrostatic Induction and Triboelectric Effects,” Advanced Materials Technologies, Vol. 5, No. 9, 2020, pp. 2000641.
  •  
  • 57. Li, Z.B., Li, H.Y., Fan, Y.J., Liu, L., Chen, Y.H., Zhang, C., and Zhu, G., “Small-sized, Lightweight, and Flexible Triboelectric Nanogenerator Enhanced by PTFE/PDMS Nanocomposite Electret,” ACS Applied Materials & Interfaces, Vol. 11, No. 22, 2019, pp. 20370-20377.
  •  
  • 58. Tao, J., Bao, R., Wang, X., Peng, Y., Li, J., Fu, S., Pan, C., and Wang, Z.L., “Self‐powered Tactile Sensor Array Systems Based on the Triboelectric Effect,” Advanced Functional Materials, Vol. 29, No. 41, 2019, pp. 1806379.
  •  
  • 59. Hua, Q., Sun, J., Liu, H., Bao, R., Yu, R., Zhai, J., Pan, C., and Wang, Z.L., “Skin-inspired Highly Stretchable and Conformable Matrix Networks for Multifunctional Sensing,” Nature Communications, Vol. 9, No. 1, 2018, pp. 1-11.
  •  
  • 60. Kim, D.-H., Lu, N., Ma, R., Kim, Y.-S., Kim, R.-H., Wang, S., Wu, J., Won, S. M., Tao, H., Islam, A., Yu, K.J., Kim, T.-I., Chowdhury, R., Ying, M., Xu, L., Li, M., Chung, H.-J., Keum, H., McCormick, M., Liu, P., Zhang, Y.-W., Omenetto, F.G., Huang, Y., Cleman, T., and Rogers, J.A., “Epidermal Electronics,” Science, Vol. 333, No. 6044, 2011, pp. 838-843.
  •  
  • 61. Peng, L., Zhang, Y., Wang, J., Wang, Q., Zheng, G., Li, Y., Chen, Z., Chen, Y., Jiang, L., and Wong, C.-P., “Slug-inspired Magnetic Soft Millirobot Fully Integrated with Triboelectric Nanogenerator for On-board Sensing and Self-powered Charging,” Nano Energy, Vol. 99, 2022, pp. 107367.
  •  
  • 62. Sun, W., Li, B., Zhang, F., Fang, C., Lu, Y., Gao, X., Cao, C., Chen, G., Zhang, C., and Wang, Z.L., “TENG-Bot: Triboelectric Nanogenerator Powered Soft Robot Made of Uni-directional Dielectric Elastomer,” Nano Energy, Vol. 85, 2021, pp. 106012.
  •  
  • 63. Xie, Y., Wang, S., Niu, S., Lin, L., Jing, Q., Yang, J., Wu, Z., and Wang, Z.L., “Grating‐structured Freestanding Triboelectric‐layer Nanogenerator for Harvesting Mechanical Energy at 85% Total Conversion Efficiency,” Advanced Materials, Vol. 26, No. 38, 2014, pp. 6599-6607.
  •  
  • 64. Jin, T., Sun, Z., Li, L., Zhang, Q., Zhu, M., Zhang, Z., Yuan, G., Chen, T., Tian, Y., Hou, X., and Lee, C., “Triboelectric Nanogenerator Sensors for Soft Robotics Aiming at Digital Twin Applications,” Nature Communications, Vol. 11, No. 1, 2020, pp. 1-12.
  •  
  • 65. Chen, J., Han, K., Luo, J., Xu, L., Tang, W., and Wang, Z.L., “Soft robots with Self-powered Configurational Sensing,” Nano Energy, Vol. 77, 2020, pp. 105171.
  •  
  • 66. Chen, S., Pang, Y., Yuan, H., Tan, X., and Cao, C., “Smart Soft Actuators and Grippers Enabled by Self‐Powered Tribo‐Skins,” Advanced Materials Technologies, Vol. 5, No. 4, 2020, pp. 1901075.
  •  
  • 67. Zheng, L., Dong, S., Nie, J., Li, S., Ren, Z., Ma, X., Chen, X., Li, H., and Wang, Z.L., “Dual-stimulus Smart Actuator and Robot Hand Based on a Vapor-responsive PDMS Film and Triboelectric Nanogenerator,” ACS Applied Materials & Interfaces, Vol. 11, No. 45, 2019, pp. 42504-42511.
  •  
  • 68. Yang, H., Deng, M., Tang, Q., He, W., Hu, C., Xi, Y., Liu, R., and Wang, Z.L., “A Nonencapsulative Pendulum‐like Paper-based Hybrid Nanogenerator for Energy Harvesting,” Advanced Energy Materials, Vol. 9, No. 33, 2019, pp. 1901149.
  •  
  • 69. Cheng, X., Tang, W., Song, Y., Chen, H., Zhang, H., and Wang, Z.L., “Power Management and Effective Energy Storage of Pulsed Output from Triboelectric Nanogenerator,” Nano Energy, Vol. 61, 2019, pp. 517-532.
  •  
  • 70. Wang, Z.L., “On Maxwell's Displacement Current for Energy and Sensors: the Origin of Nanogenerators,” Materials Today, Vol. 20, No. 2, 2017, pp. 74-82.
  •  
  • 71. Chen, X., Jiang, T., Yao, Y., Xu, L., Zhao, Z., and Wang, Z.L., “Stimulating Acrylic Elastomers by a Triboelectric Nanogenerator-toward Self‐powered Electronic Skin and Artificial Muscle,” Advanced Functional Materials, Vol. 26, No. 27, 2016, pp. 4906-4913.
  •  
  • 72. Qu, X., Ma, X., Shi, B., Li, H., Zheng, L., Wang, C., Liu, Z., Fan, Y., Chen, X., Li, Z., and Wang, Z.L., “Refreshable Braille Display System Based on Triboelectric Nanogenerator and Dielectric Elastomer,” Advanced Functional Materials, Vol. 31, No. 5, 2021, pp. 2006612.
  •  
  • 73. Shi, Y., Wang, F., Tian, J., Li, S., Fu, E., Nie, J., Lei, R., Ding, Y., Chen, X., and Wang, Z.L., “Self-powered Electro-tactile System for Virtual Tactile Experiences,” Science Advances, Vol. 7, No. 6, 2021, pp. abe2943.
  •  
  • 74. Shlomy, I., Divald, S., Tadmor, K., Leichtmann-Bardoogo, Y., Arami, A., and Maoz, B.M., “Restoring Tactile Sensation Using a Triboelectric Nanogenerator,” ACS Nano, Vol. 15, No. 7, 2021, pp. 11087-11098.
  •  
  • 75. Guo, X., Pei, W., Wang, Y., Chen, Y., Zhang, H., Wu, X., Yang, X., Chen, H., Liu, Y., and Liu, R., “A Human-machine Interface Based on Single Channel EOG and Patchable Sensor,” Biomedical Signal Processing and Control, Vol. 30, 2016, pp. 98-105.
  •  
  • 76. Belkacem, A.N., Shin, D., Kambara, H., Yoshimura, N., and Koike, Y., “Online Classification Algorithm for Eye-movement-based Communication Systems Using two Temporal EEG Sensors,” Biomedical Signal Processing and Control, Vol. 16, 2015, pp. 40-47.
  •  
  • 77. Vandhana, P., “A Novel Efficient Human Computer Interface Using an Electrooculogram,” International Journal of Research in Engineering and Technology, Vol. 3, No. 4, 2014, pp. 799-803.
  •  
  • 78. Pu, X., Guo, H., Chen, J., Wang, X., Xi, Y., Hu, C., and Wang, Z.L., “Eye Motion Triggered Self-powered Mechnosensational Communication System Using Triboelectric Nanogenerator,” Science advances, Vol. 3, No. 7, 2017, pp. e1700694.
  •  
  • 79. He, T., Sun, Z., Shi, Q., Zhu, M., Anaya, D.V., Xu, M., Chen, T., Yuce, M.R., Thean, A.V.-Y., and Lee, C., “Self-powered Glove-based Intuitive Interface for Diversified Control Applications in Real/Cyber Space,” Nano Energy, Vol. 58, 2019, pp. 641-651.
  •  
  • 80. Kang, S., Cho, S., Shanker, R., Lee, H., Park, J., Um, D.-S., Lee, Y., and Ko, H., “Transparent and Conductive Nanomembranes with Orthogonal Silver Nanowire Arrays for Skin-attachable Loudspeakers and Microphones,” Science Advances, Vol. 4, No. 8, 2018, pp. aas8772.
  •  
  • 81. Song, Y., Min, J., Yu, Y., Wang, H., Yang, Y., Zhang, H., and Gao, W., “Wireless Battery-free Wearable Sweat Sensor Powered by Human Motion,” Science Advances, Vol. 6, No. 40, 2020, pp. aay9842.
  •  
  • 82. Shi, Q., and Lee, C., “Self‐powered Bio‐inspired Spider‐net‐coding Interface Using Single‐electrode Triboelectric Nanogenerator,” Advanced Science, Vol. 6, No. 15, 2019, pp. 1900617.
  •  
  • 83. Shi, Q., Zhang, Z., Chen, T., and Lee, C., “Minimalist and Multi-functional Human Machine Interface (HMI) Using a Flexible Wearable Triboelectric Patch,” Nano Energy, Vol. 62, 2019, pp. 355-366.
  •  
  • 84. Lee, J., Sul, H., Lee, W., Pyun, K. R., Ha, I., Kim, D., Park, H., Eom, H., Yoon, Y., Jung, J., Lee, D., and Ko, S.H., “Stretchable Skin‐like Cooling/heating Device for Reconstruction of Artificial Thermal Sensation in Virtual Reality,” Advanced Functional Materials, Vol. 30, No. 29, 2020, pp. 1909171.
  •  

This Article

Correspondence to

  • Dukhyun Choi
  • School of Mechanical Engineering, Sungkyunkwan University

  • E-mail: bred96@skku.edu