Special Issue
  • A Study on Microstructure and Mechanical Properties of TiB2-steel Composite Fabricated by Gas Pressure Infiltration Process
  • Jihye Lee*,**, Donghyun Lee*, Seungchan Cho*, Hansang Kwon**, Sang-Kwan Lee*, Sang-Bok Lee*, Junghwan Kim*†

  • * Composites Research Division, Korea Institute of Materials Science, Changwon, Korea
    ** Major of Materials System Engineering, School of Convergence Material Engineering, Pukyong National University, Busan 48547, Korea

  • 가스압 함침 공정으로 제조된 TiB2-steel 금속복합재료의 미세조직 및 기계적 물성에 관한 연구
  • 이지혜*,**· 이동현*· 조승찬*· 권한상**· 이상관*· 이상복*· 김정환*†

  • This article is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

References
  • 1. Cho, S., Jo, I., Kim, H., Kwon, H.-T., Lee, S.-K., and Lee, S.-B., “Effect of TiC Addition on Surface Oxidation Behavior of SKD11 Tool Steel Composites,” Applied Surface Science, Vol. 415, 2017, pp. 155-160.
  •  
  • 2. Akhtar, F., Guo, S., Feng, P., Khadijah Ali, S., and Syed Javid, A., “TiC-maraging Stainless Steel Composite: Microstructure, Mechanical and Wear Properties,” Rare Metals, Vol. 25, No. 6, 2006, pp. 630-635.
  •  
  • 3. Ko, S., Park, H., Lee, Y.-H., Shin, S., Jo, I., Kim, J., Lee, S.-B., Kim, Y., Lee, S.-K., and Cho, S., “Fabrication of TiB2–Al1050 Composites with Improved Microstructural and Mechanical Properties by a Liquid Pressing Infiltration Process,” Materials, Vol. 13, No. 7, 2020, 1588.
  •  
  • 4. Kumar, A., Batham, H., and Das, A.K., “Microhardness of Fe-TiB2 Composite Coating on AISI 304 Stainless Steel by TIG Coating Technique,” Materials Today: Proceedings, Vol. 39, 2021, pp. 1291-1295.
  •  
  • 5. Lee, J., Kim, N.J., Jung, J.Y., Lee, E.-S., and Ahn, S., “The Influence of Reinforced Particle Fracture on Strengthening of Spray Formed Cu-TiB2 Composite,” Scripta Materialia, Vol. 39, No. 8, 1998, pp. 1063-1069.
  •  
  • 6. González, R., Barandika, M.G., Oña, D., Sánchez, J.M., Villellas, A., Valea, A., and Castro, F., “New Binder Phases for the Consolidation of TiB2 Hardmetals,” Materials Science and Engineering: A, Vol. 216, No. 1, 1996, pp. 185-192.
  •  
  • 7. Wang, H.M., Liu, J.Q., Li, G.R., Tang, F., Yan, Y.W., Gao, L.P., and Zhao, Y.T., “Effect of TiB2 Content on Microstructure And Mechanical Properties of (TiB2p+B4Cp)/Al Composites Fabricated by Microwave Sintering,” Journal of Materials Research and Technology, Vol. 13, 2021, pp. 1509-1520.
  •  
  • 8. Zhang, L., Huang, M., Zhang, D., and Wang, E., “Effect of Rare-earth Elements on Microstructure and Mechanical Properties of in-situ Fe-TiB2 Composites,” Materials Today Communications, Vol. 29, 2021, 102860.
  •  
  • 9. Springer, H., Aparicio Fernandez, R., Duarte, M.J., Kostka, A., and Raabe, D., “Microstructure Refinement for High Modulus in-situ Metal Matrix Composite Steels via Controlled Solidification of the System Fe–TiB2,” Acta Materialia, Vol. 96, 2015, pp. 47-56.
  •  
  • 10. Aparicio-Fernández, R., Springer, H., Szczepaniak, A., Zhang, H., and Raabe, D., “In-situ Metal Matrix Composite Steels: Effect of Alloying and Annealing on Morphology, Structure and Mechanical Properties of TiB2 Particle Containing High Modulus Steels,” Acta Materialia, Vol. 107, 2016, pp. 38-48.
  •  
  • 11. Kaptanoglu, M., and Eroglu, M., “Microstructure and Wear of Iron-based Hardfacings Reinforced with in-situ Synthesized TiB2 Particles,” Kovove Materialy, Vol. 55, 2017, pp. 123-131.
  •  
  • 12. Zhunkovskii, G.L., Grigoriev, O.N., and Vedel, D.V., “Interaction of Titanium Diboride with Iron and AISI 321H Stainless Steel,” Powder Metallurgy and Metal Ceramics, Vol. 60, No. 7, 2021, pp. 464-471.
  •  
  • 13. Gai, L., and Ziemnicka-Sylwester, M., “The TiB2-based Fe-matrix Composites Fabricated Using Elemental Powders in one Step Process by Means of SHS Combined with Pseudo-HIP,” International Journal of Refractory Metals and Hard Materials, Vol. 45, 2014, pp. 141-146.
  •  
  • 14. Wu, N., Xue, F., Wang, J., Yang, H., Luo, F., and Ruan, J., “Effect of TiN Addition on the Microstructure and Mechanical Properties of TiB2-FeNi Based Cermets,” Materials Science and Engineering: A, Vol. 743, 2019, pp. 546-557.
  •  
  • 15. Lee, D., Cho, S., Kim, Y., Lee, S.-K., Lee, S.-B., and Jo, I., “Mechanical Properties and Wear Performance of the Al7075 Composites Reinforced with Bimodal Sized SiC Particles,” Composites Research, Vol. 30, No. 5, 2017, pp. 310-315.
  •  
  • 16. Lee, Y.-H., Kim, N., Lee, S.-B., Kim, Y., Cho, S., Lee, S.-K., and Jo, I., “Microstructure and Mechanical Properties of Lightweight TiC-steel Composite Prepared by Liquid Pressing Infiltration Process,” Materials Characterization, Vol. 162, 2020, 110202.
  •  
  • 17. Wang, Z.-J., Zhang, W.-N., Li, Y.-W., Wang, G.-D., and Liu, H.-T., “Heterogeneous Nucleation of M2B-type Borides (M = Cr, Fe) Attached to TiB2 and Ti(C,N) Particles in As-cast High Borated Steel,” Materials Characterization, Vol. 169, 2020, 110588.
  •  
  • 18. Guo, C., and Kelly, P.M., “Boron Solubility in Fe–Cr–B Cast Irons,” Materials Science and Engineering: A, Vol. 352, No. 1, 2003, pp. 40-45.
  •  

This Article

Correspondence to

  • Junghwan Kim
  • * Composites Research Division, Korea Institute of Materials Science, Changwon, Korea

  • E-mail: jhwankim@kims.re.kr