Review Article
  • A Trend and Market in Eco-friendly Plasticizers: Review and Prospective
  • Eunyoung Oh*, Baek-hwan Kim**,***, Jonghwan Suhr*,**†

  • * Department of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Korea
    ** Department of Polymer Science & Engineering, Sungkyunkwan University, Suwon 16419, Korea
    *** Nexen Tire Corporation, Seoul 07594, Korea

  • 친환경 가소제의 시장과 동향
  • 오은영*· 김백환**,***· 서종환*,**†

  • This article is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

References
  • 1. Sears, J.K., and Darby, J.R., “Mechanism of Plasticizer Action,” The Technology of Plasticizers, pp.35-77, 1982.
  •  
  • 2. Lee, J.M., “Development Trends and Eco-friendly Plasticizer Regulation”, The Korean Society of Industrial and Engineering Chemistry, Vol. 2015, No. 1, pp.122-122, 2015.
  •  
  • 3. Allied Market Research 2022, [online] Available at: https://www.alliedmarketresearch.com/bio-plasticizers-market
  •  
  • 4. Market Research 2021, [online] Available at: https://www.marketresearch.com/DataM-Intelligence-4Market-Research-LLP-v4207/Global-Bio-Plasticizer-14535206/
  •  
  • 5. Wolf, R., and Kaul, B.L., Plastics, Additves, Ullmann’s Encycl. Ind. Chem. Germany, 2012.
  •  
  • 6. Yesid, O., Encyclopedia of Polymers and Composites, Nova Science Publishers, USA, 2014.
  •  
  • 7. Grand View Research 2017, [online] Available at: https://www.grandviewresearch.com/press-release/global-bio-plasticizers-market
  •  
  • 8. Godwin, A.D., Applied Plastics Engineering Handbook, Elsevier Inc., USA, 2011.
  •  
  • 9. Wei, X.F., Kallio, K.J., Bruder, S., Bellander, M., and Hedenqvist, M.S., “Plasticizer Loss in a Complex System (Polyamide 12): Kinetics, Prediction and Its Effects on Mechanical Properties”, Polymer Degradation and Stability, Vol. 169, p.108985, 2019.
  •  
  • 10. Muobom, S.S., Umar, A.M.S., Soongseok, Y., and Brolin, A.P., “A Review on Plasticizers and Eco-friendly Bioplasticizers: Biomass Sources and Market”, International Journal of Engineering Research, Vol. 9, No. 05, pp.1138-1144, 2020.
  •  
  • 11. Kim, J., Synthesis and Processing Properties of Palm Oil and Biomass-based Bioplasticizers, Ph.D Thesis, Chungnam Nathional University, Korea, 2021.
  •  
  • 12. Varughese, S., and Tripathy, D.K., “Effect of Plasticizer Type and Concentration on the Dynamic Mechanical Properties of Epoxidized Natural Rubber Vulcanizates”, Journal of Elastomers & Plastics, Vol. 25, No. 4, pp.343-357, 1993.
  •  
  • 13. Snejdrova, E., and Dittrich, M., “Pharmaceutical Applications of Plasticized Polymers”, Recent Advances in Plasticizers, Vol. 159, pp.23-34, 2012.
  •  
  • 14. Mekonnen, T., Mussone, P., Khalil, H., and Bressler, D., “Progress in Bio-based Plastics and Plasticizing Modifications”, Journal of Materials Chemistry A, Vol. 1, No. 43, pp.13379-13398, 2013.
  •  
  • 15. Godwin, A.D., Plasticizer Selection for Specific Applications, Basic Chem., InterMed. Technol., USA, 1933.
  •  
  • 16. Marcilla, A., and Beltran, M., “Mechanisms of Plasticizers Action” Handbook of Plasticizers, pp.107-120, 2004.
  •  
  • 17. Bocqué, M., Voirin, C., Lapinte, V., Caillol, S., and Robin, J.J., “Petro‐based and Bio‐based Plasticizers: Chemical Structures to Plasticizing Properties”, Journal of Polymer Science Part A: Polymer Chemistry, Vol. 54, No. 1, pp.11-33, 2016.
  •  
  • 18. Wei, X.F., Linde, E., and Hedenqvist, M.S., “Plasticiser Loss from Plastic or Rubber Products Through Diffusion and Evaporation”, NPJ Materials Degradation, Vol. 3, No. 1, pp.1-8, 2019.
  •  
  • 19. Ayamba, A.A., Ali, M., Carboo, D., and Awuku, F.J., “Extraction and Determination of Phthalates Content in Polyethylene Food Contact Materials on the Ghanaian Market”, Journal of Natural Sciences Research, Vol. 8, pp.1-6, 2018.
  •  
  • 20. Royaux, A., Fabre-Francke, I., Balcar, N., Barabant, G., Bollard, C., Lavédrine, B., and Cantin, S., “Aging of Plasticized Polyvinyl Chloride in Heritage Collections: The Impact of Conditioning and Cleaning Treatments”, Polymer Degradation and Stability, Vol. 137, pp.109-121, 2017.
  •  
  • 21. Nagorka, R., Birmili, W., Schulze, J., and Koschorreck, J., “Diverging Trends of Plasticizers (phthalates and non-phthalates) in Indoor and Freshwater Environments—why?”, Environmental Sciences Europe, Vol. 34, No. 1, pp.1-15, 2022.
  •  
  • 22. Burgos-Aceves, M.A., Abo-Al-Ela, H.G., and Faggio, C., “Impact of Phthalates and Bisphenols Plasticizers on Haemocyte Immune Function of Aquatic Invertebrates: A Review on Physiological, Biochemical, and Genomic Aspects”, Journal of Hazardous Materials, Vol. 419, p.126426, 2021.
  •  
  • 23. Bi, C., Maestre, J.P., Li, H., Zhang, G., Givehchi, R., Mahdavi, A., Kinney, K.A., Siegel, J., Horner, S.D., and Xu, Y., “Phthalates and Organophosphates in Settled Dust and HVAC Filter Dust of US low-income Homes: Association with Season, Building Characteristics, and Childhood Asthma”, Environment International, Vol. 121, pp.916-930, 2018.
  •  
  • 24. Bope, A., Haines, S.R., Hegarty, B., Weschler, C.J., Peccia, J., and Dannemiller, K.C., “Degradation of Phthalate Esters in Floor Dust at Elevated Relative Humidity”, Environmental Science: Processes & Impacts, Vol. 21, No. 8, pp.1268-1279, 2019.
  •  
  • 25. Wormuth, M., Scheringer, M., Vollenweider, M., and Hungerbühler, K., “What are the Sources of Exposure to Eight Frequently Used Phthalic Acid Esters in Europeans?”, Risk Analysis, Vol. 26, No. 3, pp.803-824, 2006.
  •  
  • 26. Heudorf, U., Mersch-Sundermann, V., and Angerer, J., “Phthalates: Toxicology and Exposure”, International Journal of Hygiene and Environmental Health, Vol. 210, No. 5, pp.623-634, 2007.
  •  
  • 27. Pant, N., Shukla, M., Patel, D.K., Shukla, Y., Mathur, N., Gupta, Y.K., and Saxena, D.K., “Correlation of Phthalate Exposures with Semen Quality”, Toxicology and Applied Pharmacology, Vol. 231, No. 1, pp.112-116, 2008.
  •  
  • 28. Saeki, Y., and Emura, T., “Technical Progresses for PVC Production”, Progress in Polymer Science, Vol. 27, No. 10, pp.2055-2131, 2002.
  •  
  • 29. Abb, M., Heinrich, T., Sorkau, E., and Lorenz, W., “Phthalates in House Dust”, Environment International, Vol. 35, No. 6, pp.965-970, 2009.
  •  
  • 30. Lott, S., Phthalate-free Plasticizers in PVC, Healthy Building Network, USA, 2001.
  •  
  • 31. McCormick, K., and Kautto, N., “The Bioeconomy in Europe: An Overview”, Sustainability, Vol. 5, No. 6, pp.2589-2608, 2013.
  •  
  • 32. Msanne, J., Kim, H., and Cahoon, E.B., “Biotechnology Tools and Applications for Development of Oilseed Crops with Healthy Vegetable Oils”, Biochimie, Vol. 178, pp.4-14, 2020.
  •  
  • 33. Wai, P.T., Jiang, P., Shen, Y., Zhang, P., Gu, Q., and Leng, Y., “Catalytic Developments in the Epoxidation of Vegetable Oils and the Analysis Methods of Epoxidized Products”, RSC advances, Vol. 9, No. 65, pp.38119-38136, 2019.
  •  
  • 34. Meier, M.A., Metzger, J.O., and Schubert, U.S., “Plant Oil Renewable Resources as Green Alternatives in Polymer Science”, Chemical Society Reviews, Vol. 36, No. 11, pp.1788-1802, 2007.
  •  
  • 35. Giannakas, A., Patsaoura, A., Barkoula, N.M., and Ladavos, A., “A Novel Solution Blending Method for Using Olive Oil and Corn Oil as Plasticizers in Chitosan Based Organoclay Nanocomposites”, Carbohydrate Polymers, Vol. 157, pp.550-557, 2017.
  •  
  • 36. Jia, P.Y., Bo, C.Y., Zhang, L.Q., Hu, L.H., Zhang, M., and Zhou, Y.H., “Synthesis of Castor Oil Based Plasticizers Containing Flame Retarded Group and Their Application in Poly (vinyl chloride) as Secondary Plasticizer”, Journal of Industrial and Engineering Chemistry, Vol. 28, pp.217-224, 2015.
  •  
  • 37. Zhang, H., Zhu, F., Fu, Q., Zhang, X., and Zhu, X., “Mechanical Properties of Renewable Plasticizer Based on Ricinoleic Acid for PVC”, Polymer Testing, Vol. 76, pp.199-206, 2019.
  •  
  • 38. Chu, H., and Ma, J., “A Strategy to Prepare Internally Plasticized PVC Using a Castor Oil Based Derivative” Korean Journal of Chemical Engineering, Vol. 35, No. 11, pp.2296-2302, 2018.
  •  
  • 39. Gama, N.V., Santos, R., Godinho, B., Silva, R., and Ferreira, A., “Methyl Acetyl Ricinoleate as Polyvinyl Chloride Plasticizer”, Journal of Polymers and the Environment, Vol. 27, No. 4, pp.703-709, 2019.
  •  
  • 40. Ma, Y., Song, F., Kong, Q., Li, Q., Jia, P., and Zhou, Y., “Preparation and Performance of Bio-based Polyol Ester from One-pot Synthesis of Castor Oil as Nontoxic Poly (vinyl chloride) Plasticizer”, Journal of Polymers and the Environment, Vol. 28, No. 8, pp.2101-2107, 2020.
  •  
  • 41. Brostow, W., Lu, X., and Osmanson, A.T., “Nontoxic Bio-plasticizers for PVC as Replacements for Conventional Toxic Plasticizers”, Polymer Testing, Vol. 69, pp.63-70, 2018.
  •  
  • 42. Chen, J., Li, X., Wang, Y., Huang, J., Li, K., Nie, X., and Jiang, J., “Synthesis and Application of Environmental Soybean Oil‐based Epoxidized Glycidyl Ester Plasticizer for Poly (vinyl chloride)”, European Journal of Lipid Science and Technology, Vol. 119, No. 5, p.1600216, 2017.
  •  
  • 43. Jia, P., Zhang, M., Hu, L., and Zhou, Y., “Green Plasticizers Derived from Soybean Oil for Poly (vinyl chloride) as a Renewable Resource Material”, Korean Journal of Chemical Engineering, Vol. 33, No. 3, pp.1080-1087, 2016.
  •  
  • 44. Yang, D., Peng, X., Zhong, L., Cao, X., Chen, W., Zhang, X., Liu, S., and Sun, R., “Green Films from Renewable Resources: Properties of Epoxidized Soybean Oil Plasticized Ethyl Cellulose Films”, Carbohydrate Polymers, Vol. 103, pp.198-206, 2014.
  •  
  • 45. Wang, M., Song, X., Jiang, J., Xia, J., Ding, H., and Li, M., “Plasticization and Thermal Behavior of Hydroxyl And Nitrogen Rich Group-containing Tung-oil-based Ester Plasticizers for PVC”, New Journal of Chemistry, Vol. 42, No. 4, pp.2422-2431, 2018.
  •  
  • 46. Jia, P., Ma, Y., Xia, H., Zheng, M., Feng, G., Hu, L., Zhang, M., and Zhou, Y., “Clean Synthesis of Epoxidized Tung Oil Derivatives via Phase Transfer Catalyst and Thiol–ene Reaction: A Detailed Study”, ACS Sustainable Chemistry & Engineering, Vol. 6, No. 11, pp.13983-13994, 2018.
  •  
  • 47. Chen, J., Wang, Y., Huang, J., Li, K., and Nie, X., “Synthesis of Tung-oil-based Triglycidyl Ester Plasticizer and Its Effects on Poly (vinyl chloride) Soft Films”, ACS Sustainable Chemistry & Engineering, Vol. 6, No. 1, pp.642-651, 2018.
  •  
  • 48. Volpe, V., De Feo, G., De Marco, I., and Pantani, R., “Use of Sunflower Seed Fried Oil as an Ecofriendly Plasticizer for Starch and Application of this Thermoplastic Starch as a Filler for PLA”, Industrial Crops and Products, Vol. 122, pp.545-552, 2018.
  •  
  • 49. Chieng, B.W., Ibrahim, N.A., Then, Y.Y., and Loo, Y.Y., “Epoxidized Jatropha oil as a Sustainable Plasticizer to Poly (lactic acid)”, Polymers, Vol. 9, No. 12, p.204, 2017.
  •  
  • 50. Carbonell‐Verdu, A., Garcia‐Sanoguera, D., Jordá‐Vilaplana, A., Sanchez‐Nacher, L., and Balart, R., “A New Biobased Plasticizer for Poly (vinyl chloride) Based on Epoxidized Cottonseed Oil”, Journal of Applied Polymer Science, Vol. 133, No. 27, 2016.
  •  
  • 51. Chen, J., Li, X., Wang, Y., Huang, J., Li, K., Nie, X., and Jiang, J., “Epoxidized Dimeric Acid Methyl Ester Derived from Rubber Seed Oil and Its Application as Secondary Plasticizer”, Journal of Applied Polymer Science, Vol. 133, No. 34, 2016.
  •  
  • 52. Kamarudin, S.H., Jusoh, E.R., Abdullah, L.C., Ismail, M.H.S., Aung, M.M., and Ratnam, C.T., “Thermal and Dynamics Mechanical Analysis of Polypropylene Blown Films with Crude Palm Oil as Plasticizer”, Indonesian Journal of Chemistry, Vol. 19, No. 3, pp.545-555, 2019.
  •  
  • 53. Rauter, A.P., Lindhorst, T., and Queneau, Y., Chemistry for Biologists: Carbohydrates, Chemical, Biology, RCS Publishing, USA, 2019.
  •  
  • 54. Adhikari, B., Chaudhary, D.S., and Clerfeuille, E., “Effect of Plasticizers on the Moisture Migration behavior of Low-amylose Starch Films during Drying”, Drying Technology, Vol. 28, No. 4, pp.468-480, 2010.
  •  
  • 55. Yang, Z., Peng, H., Wang, W., and Liu, T., “Crystallization Behavior of Poly(ε-caprolactone)/layered Double Hydroxide Nanocomposites”, Journal of Applied Polymer Science, Vol. 116, pp.2658–2667, 2010.
  •  
  • 56. Kaspar, H.R.E., and Pizzi, A., “Industrial Plasticizing/dispersion Aids for Cement Based on Polyflavonoid Tannins”, Journal of Applied Polymer Science, Vol. 59, No. 7, pp.1181–1190, 1996.
  •  
  • 57. Azwar, E., Yin, B., and Hakkarainen, M., “Liquefied Biomass Derived Plasticizer for Polylactide”, Journal of Chemical Technology & Biotechnology, Vol. 88, No. 5, pp.897–903, 2013.
  •  
  • 58. Mikus, P.Y., Alix, S., Soulestin, J., Lacrampe, M.F., Krawczak, P., Coqueret, X., and Dole, P., “Deformation Mechanisms of Plasticized Starch Materials”, Carbohydrate Polymers, Vol. 114, pp.450-457, 2014.
  •  
  • 59. Fakhouri, F.M., Martelli, S.M., Bertan, L.C., Yamashita, F., Mei, L.H.I., and Queiroz, F.P.C., “Edible Films Made from Blends of Manioc Starch and Gelatin–influence of Different Types of Plasticizer and Different Levels of Macromolecules on Their Properties”, LWT, Vol. 49, No. 1, pp.149-154, 2012.
  •  
  • 60. Bertuzzi, M.A., Vidaurre, E.C., Armada, M., and Gottifredi, J.C., “Water Vapor Permeability of Edible Starch Based Films”, Journal of Food Engineering, Vol. 80, No. 3, pp.972-978, 2007.
  •  
  • 61. Park, J.W., Whiteside, W.S., and Cho, S.Y., “Mechanical and Water Vapor Barrier Properties of Extruded and Heat-pressed Gelatin Films”, LWT-Food Science and Technology, Vol. 41, No. 4, pp.692-700, 2008.
  •  
  • 62. Banker, G.S., “Film Coating Theory and Practice”, Journal of Pharmaceutical Sciences, Vol. 55, No. 1, pp.81-89, 1996.
  •  
  • 63. McHugh, T.H., and Krochta, J.M., “Sorbitol-vs Glycerol-plasticized whey Protein Edible Films: Integrated Oxygen Permeability and Tensile Property Evaluation”, Journal of Agricultural and Food Chemistry, Vol. 42, No. 4, pp.841-845, 1994.
  •  
  • 64. Nashed, G., Rutgers, R.P., and Sopade, P.A., “The Plasticisation Effect of Glycerol and Water on the Gelatinisation of Wheat Starch”, Starch‐Stärke, Vol. 55, No. 3‐4, pp.131-137, 2003.
  •  
  • 65. Bourtoom, T., “Plasticizer Effect on the Properties of Biodegradable Blend Film from Rice Starch-chitosan”, Songklanakarin Journal of Science & Technology, Vol. 30, 2008.
  •  
  • 66. Liu, H., Adhikari, R., Guo, Q., and Adhikari, B., “Preparation and Characterization of Glycerol Plasticized (high-amylose) Starch–chitosan Films”, Journal of Food Engineering, Vol. 116, No. 2, pp.588-597, 2013.
  •  
  • 67. Hosokawa, J., Nishiyama, M., Yoshihara, K., and Kubo, T., “Biodegradable Film Derived from Chitosan and Homogenized Cellulose”, Industrial & Engineering Chemistry Research, Vol. 29, No. 5, pp.800-805, 1990.
  •  
  • 68. Belous, A., Tchoudakov, R., Tzur, A., Narkis, M., and Alperstein, D., “Development and Characterization of Plasticized Polyamides by Fluid and Solid Plasticizers”, Polymers for Advanced Technologies, Vol. 23, No. 6, pp.938-945, 2012.
  •  
  • 69. Alperstein, D., Knani, D., Goichman, A., and Narkis, M., “Determination of Plasticizers Efficiency for Nylon by Molecular Modeling”, Polymer Bulletin, Vol. 68, No. 7, pp.1977-1988, 2012.
  •  
  • 70. Plasman, V., Caulier, T., and Boulos, N., “Polyglycerol Esters Demonstrate Superior Antifogging Properties for Films”, Plastics, Additives and Compounding, Vol. 7, No. 2, pp.30-33, 2005.
  •  
  • 71. Greco, A., Brunetti, D., Renna, G., Mele, G., and Maffezzoli, A., “Plasticizer for Poly (vinyl chloride) from Cardanol as a Renewable Resource Material”, Polymer Degradation and Stability, Vol. 95, No. 11, pp.2169-2174, 2010.
  •  
  • 72. Murthy, B.G.K., Samban, M.S., and Aggarwal, J.S., “Identification of Some Naturally Occurring Alkylsubstituted Phenols in Cashew-nut Shell Liquid by Chromatographic Techniques”, Journal of Chromatography A, Vol. 32, pp.519-528, 1968.
  •  
  • 73. Menon, A.R.R., Pillai, C.K.S., and Nando, G.B., “Modification of Natural Rubber with Phosphatic Plasticizers: A Comparison of Phosphorylated Cashew Nut Shell Liquid Prepolymer with 2-ethyl Hexyl Diphenyl Phosphate”, European Polymer Journal, Vol. 34, No. 7, pp.923-929, 1998.
  •  
  • 74. Menon, A.R.R., and Visconte, L.L.Y., “Studies on Blends of Polychloroprene and Polybutadiene Rubber Containing Phosphorylated Cardanol Prepolymer: Melt Rheology, Cure Characteristics, and Mechanical Properties”, Journal of Applied Polymer Science, Vol. 102, No. 4, pp.3195-3200, 2006.
  •  
  • 75. Menon, A.R., “Melt Rheology of Ethylene Propylene Diene Rubber Modified with Phosphorylated Cashew Nut Shell Liquid Prepolymer,” Iranian Polymer Journal, Vol. 12, No. 4, pp.305-313, 2003.
  •  
  • 76. Menon, A.R., and Pillai, C.S., “Processability Characteristics and Thermal Stability of Blends of LDPE and EVA Copolymer Modified with Phosphorylated Cashew Nut Shell Liquid Prepolymer”, Iranian Polymer Journal, Vol. 11, No. 2, pp.85-91, 2002.
  •  
  • 77. Wang, H., and Zhou, Q., “Synthesis of Cardanol-based Polyols via Thiol-ene/thiol-epoxy Dual Click-reactions and Thermosetting Polyurethanes Therefrom”, ACS Sustainable Chemistry & Engineering, Vol. 6, No. 9, pp.12088-12095, 2018.
  •  
  • 78. Culea, R.E., Tamba-Berehoiu, R.M., and Popa, N.C., “Sensory properties of Some White Wines, Flavored Wines and Vermouth Type Wines, prepared by Using Own Recipes”, Scientific Papers Series Management, Economic Engineering in Agriculture and Rural Development, Vol. 15, No. 1, pp.147-151, 2015.
  •  
  • 79. Johnson Jr, W., “Final Report on the Safety Assessment of Acetyl Triethyl Citrate, Acetyl Tributyl Citrate, Acetyl Trihexyl Citrate, and Acetyl Trioctyl Citrate”, International Journal of Toxicology, Vol. 21, pp.1-17, 2002.
  •  
  • 80. Wilkes, C.E., Summers, J.W., Daniels, C.A., and Berard, M.T., 2005. PVC Handbook (Vol. 184). Munich: Hanser, 2005.
  •  
  • 81. Pritchard, G., 2005. Plastics Additives: a Rapra Market Report. iSmithers Rapra Publishing, 2005.
  •  
  • 82. Ghiya, V.P., Dave, V., Gross, R.A., and Mccarthy, S.P., “Biodegradability of Cellulose Acetate Plasticized with Citrate Esters”, Journal of Macromolecular Science, Part A: Pure and Applied Chemistry, Vol. 33, No. 5, pp.627-638, 1996.
  •  
  • 83. Labrecque, L.V., Kumar, R.A., Dave, V., Gross, R.A., and McCarthy, S.P., “Citrate Esters as Plasticizers for Poly (lactic acid)”, Journal of Applied Polymer Science, Vol. 66, No. 8, pp.1507-1513, 1997.
  •  
  • 84. Ljungberg, N., Andersson, T., and Wesslén, B., “Film Extrusion and Film Weldability of Poly (lactic acid) Plasticized with Triacetine and Tributyl Citrate”, Journal of Applied Polymer Science, Vol. 88, No. 14, pp.3239-3247, 2003.
  •  
  • 85. Hiltunen, E., Selin, J.F., and Skog, M., US Patent 6117928 A, 2000.
  •  
  • 86. Khodaverdi, E., Tekie, F.S.M., Amoli, S.S., and Sadeghi, F., “Comparison of Plasticizer Effect on Thermo-responsive Properties of Eudragit RS Films”, AAPS Pharmscitech, Vol. 13, No. 3, pp.1024-1030, 2012.
  •  
  • 87. Jamarani, R., Erythropel, H.C., Nicell, J.A., Leask, R.L., and Marić, M., “How Green is your Plasticizer?”, Polymers, Vol. 10, No. 8, p.834, 2018.
  •  
  • 88. Nguyen, T., Kim, Y.J., Park, S.K., Lee, K.Y., Park, J.W., Cho, J.K., and Shin, S., “Furan-2, 5-and Furan-2, 3-dicarboxylate Esters Derived from Marine Biomass as Plasticizers for Poly (vinyl chloride)”, ACS Omega, Vol. 5, No. 1, pp.197-206, 2019.
  •  
  • 89. Jia, P., Ma, Y., Feng, G., Hu, L., and Zhou, Y., “High-value Utilization of Forest Resources: Dehydroabietic Acid as a Chemical Platform for Producing Non-toxic and Environment-friendly Polymer Materials”, Journal of Cleaner Production, Vol. 227, pp.662-674, 2019.
  •  
  • 90. Hu, Y., Yuan, L., Zhang, X., Zhou, H., Wang, P., Li, G., Wang, A., Cong, Y., Zhang, T., Liang, X. Li, W., and Li, N., “Production of 1, 2-cyclohexanedicarboxylates from Diacetone Alcohol and Fumarates”, ACS Sustainable Chemistry & Engineering, Vol. 7, No. 3, pp.2980-2988, 2019.
  •  

This Article

Correspondence to

  • Jonghwan Suhr
  • * Department of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Korea
    ** Department of Polymer Science & Engineering, Sungkyunkwan University, Suwon 16419, Korea

  • E-mail: suhr@skku.edu