Original Article
  • Performance Study of Composite Air Filters Using Heterogeneous Fibers
  • Ji Soo Lee*,**, Yuree Oh*, Heejin Kim*,**, Hyun-Seol Park***, Sam S. Yoon**†, Min Wook Lee*†

  • * Institute of Advanced Composite Materials, Korea Institute of Science and Technology, Jeonbuk 55324, Korea
    ** School of Mechanical Engineering, Korea University, Seoul 02841, Korea Climate Change Technology Research Division, Korea
    *** Institute of Energy Research, Daejeon 34129, Korea

  • This article is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

References
  • 1. Kodros, J.K., O’Dell, K., Samet, J.M., L’Orange, C., Pierce, J.R., and Volckens, J., “Quantifying the Health Benefits of Face Masks and Respirators to Mitigate Exposure to Severe Air Pollution,” GeoHealth, Vol. 5, No. 9, 2021, p. e2021GH000482.
  •  
  • 2. Chowdhury, M.A., Shuvho, M.B.A., Shahid, M.A., Haque, A.K.M.M., Kashem, M.A., Lam, S.S., Ong, H.C., Uddin, M.A., and Mofijur, M., “Prospect of Biobased Antiviral Face Mask to Limit the Coronavirus Outbreak,” Environmental Research, Vol. 192, 2021, p. 110294.
  •  
  • 3. Cheng, V.C.-C., Wong, S.-C., Chuang, V.W.-M., So, S.Y.-C., Chen, J.H.-K., Sridhar, S., To, K.K.-W., Chan, J.F.-W., Hung, I.F.-N., Ho, P.-L., and Yuen, K.-Y., “The Role of Community-wide Wearing of Face Mask for Control of Coronavirus Disease 2019 (COVID-19) Epidemic Due to SARS-CoV-2,” Journal of Infection, Vol. 81, No. 1, 2020, pp. 107-114.
  •  
  • 4. Fikenzer, S., Uhe, T., Lavall, D., Rudolph, U., Falz, R., Busse, M., Hepp, P., and Laufs, U., “Effects of Surgical and FFP2/N95 Face Masks on Cardiopulmonary Exercise Capacity,” Clinical Research in Cardiology, Vol. 109, No. 12, 2020, pp. 1522-1530.
  •  
  • 5. Wu, W., Sota, H., Hirogaki, T., and Aoyama, E., “Investigation of Air Filter Properties of Nanofiber Non-woven Fabric Manufactured by a Modified Melt-blowing Method Along with Flash Spinning Method,” Precision Engineering, Vol. 68, 2021, pp. 187-196.
  •  
  • 6. Bai, Y., Han, C.B., He, C., Gu, G.Q., Nie, J.H., Shao, J.J., Xiao, T.X., Deng, C.R., and Wang, Z.L., “Washable Multilayer Triboelectric Air Filter for Efficient Particulate Matter PM2.5 Removal,” Advanced Functional Materials, Vol. 28, No. 15, 2018, p. 1706680.
  •  
  • 7. Wang, Z., and Pan, Z., “Preparation of Hierarchical Structured Nano-sized/porous Poly(lactic acid) Composite Fibrous Membranes for Air Filtration,” Applied Surface Science, Vol. 356, 2015, pp. 1168-1179.
  •  
  • 8. Gao, H., Yang, Y., Akampumuza, O., Hou, J., Zhang, H., and Qin, X., “A Low Filtration Resistance Three-dimensional Composite Membrane Fabricated via Free Surface Electrospinning for Effective PM2.5 Capture,” Environmental Science: Nano, Vol. 4, No. 4, 2017, pp. 864-875.
  •  
  • 9. Yang, Y., Zhang, S., Zhao, X., Yu, J., and Ding, B., “Sandwich Structured Polyamide-6/polyacrylonitrile Nanonets/bead-on-string Composite Membrane for Effective Air Filtration,” Separation and Purification Technology, Vol. 152, 2015, pp. 14-22.
  •  
  • 10. Roh, S., Song, M., Lee, K., Park, K., and Kim, J., “Experimental and Computational Investigation of Intra- and Interlayer Space for Enhanced Depth Filtration and Reduced Pressure Drop,” ACS Applied Materials & Interfaces, Vol. 12, No. 41, 2020, pp. 46804-46815.
  •  
  • 11. Zhang, S., Liu, H., Yin, X., Yu, J., and Ding, B., “Anti-deformed Polyacrylonitrile/Polysulfone Composite Membrane with Binary Structures for Effective Air Filtration,” ACS Applied Materials & Interfaces, Vol. 8, No. 12, 2016, pp. 8086-8095.
  •  
  • 12. Gao, Y., Zhang, J., Su, Y., Wang, H., Wang, X.-X., Huang, L.-P., Yu, M., Ramakrishna, S., and Long, Y.-Z., “Recent Progress and Challenges in Solution Blow Spinning,” Materials Horizons, Vol. 8, No. 2, 2021, pp. 426-446.
  •  
  • 13. Sabbatier, G., Abadie, P., Dieval, F., Durand, B., and Laroche, G., “Evaluation of an Air Spinning Process to Produce Tailored Biosynthetic Nanofibre Scaffolds,” Materials Science and Engineering: C, Vol. 35, 2014, pp. 347-353.
  •  
  • 14. Bilbao-Sainz, C., Chiou, B.-S., Valenzuela-Medina, D., Du, W.-X., Gregorski, K.S., Williams, T.G., Wood, D.F., Glenn, G.M., and Orts, W.J., “Solution Blow Spun Poly(lactic acid)/hydroxypropyl Methylcellulose Nanofibers with Antimicrobial Properties,” European Polymer Journal, Vol. 54, 2014, pp. 1-10.
  •  
  • 15. Souza, M.A., Sakamoto, K.Y., and Mattoso, L.H.C., “Release of the Diclofenac Sodium by Nanofibers of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Obtained from Electrospinning and Solution Blow Spinning,” Journal of Nanomaterials, Vol. 2014, 2014, Article No. 56.
  •  
  • 16. Akentjew, T.L., Terraza, C., Suazo, C., Maksimcuka, J., Wilkens, C.A., Vargas, F., Zavala, G., Ocaña, M., Enrione, J., García-Herrera, C.M., Valenzuela, L.M., Blaker, J.J., Khoury, M., and Acevedo, J.P., “Rapid Fabrication of Reinforced and Cell-laden Vascular Grafts Structurally Inspired by Human Coronary Arteries,” Nature Communications, Vol. 10, No. 1, 2019, p. 3098.
  •  
  • 17. Deng, N., Kang, W., Ju, J., Fan, L., Zhuang, X., Ma, X., He, H., Zhao, Y., and Cheng, B., “Polyvinyl Alcohol-derived Carbon Nanofibers/carbon Nanotubes/sulfur Electrode with Honeycomb-like Hierarchical Porous Structure for the Stable-capacity Lithium/sulfur Batteries,” Journal of Power Sources, Vol. 346, 2017, pp. 1-12.
  •  
  • 18. Jia, K., Zhuang, X., Cheng, B., Shi, S., Shi, Z., and Zhang, B., “Solution Blown Aligned Carbon Nanofiber Yarn as Supercapacitor Electrode,” Journal of Materials Science: Materials in Electronics, Vol. 24, No. 12, 2013, pp. 4769-4773.
  •  
  • 19. Xu, X., Li, R., Tang, C., Wang, H., Zhuang, X., Liu, Y., Kang, W., and Shi, L., “Cellulose Nanofiber-embedded Sulfonated Poly (ether sulfone) Membranes for Proton Exchange Membrane Fuel Cells,” Carbohydrate Polymers, Vol. 184, 2018, pp. 299-306.
  •  
  • 20. Wang, H., Zhuang, X., Wang, X., Li, C., Li, Z., Kang, W., Yin, Y., Guiver, M.D., and Cheng, B., “Proton-Conducting Poly-γ-glutamic Acid Nanofiber Embedded Sulfonated Poly(ether sulfone) for Proton Exchange Membranes,” ACS Applied Materials & Interfaces, Vol. 11, No. 24, 2019, pp. 21865-21873.
  •  
  • 21. Choi, S., Lee, H.M., and Kim, H.S., “High Performance And Moisture Stable Humidity Sensors Based on Polyvinylidene Fluoride Nanofibers by Improving Electric Conductivity,” Polymer Engineering & Science, Vol. 59, No. 2, 2019, pp. 304-310.
  •  
  • 22. Khattab, T.A., Rehan, M., Aly, S.A., Hamouda, T., Haggag, K.M., and Klapötke, T.M., “Fabrication of PAN-TCF-hydrazone Nanofibers by Solution Blowing Spinning Technique: Naked-eye Colorimetric Sensor,” Journal of Environmental Chemical Engineering, Vol. 5, No. 3, 2017, pp. 2515-2523.
  •  
  • 23. Shi, L., Zhuang, X., Tao, X., Cheng, B., and Kang, W., “Solution Blowing Nylon 6 Nanofiber Mats for Air Filtration,” Fibers and Polymers, Vol. 14, No. 9, 2013, pp. 1485-1490.
  •  
  • 24. Khalid, B., Bai, X., Wei, H., Huang, Y., Wu, H., and Cui, Y., “Direct Blow-Spinning of Nanofibers on a Window Screen for Highly Efficient PM2.5 Removal,” Nano Letters, Vol. 17, No. 2, 2017, pp. 1140-1148.
  •  
  • 25. Jia, C., Liu, Y., Li, L., Song, J., Wang, H., Liu, Z., Li, Z., Li, B., Fang, M., and Wu, H., “A Foldable All-Ceramic Air Filter Paper with High Efficiency and High-Temperature Resistance,” Nano Letters, Vol. 20, No. 7, 2020, pp. 4993-5000.
  •  
  • 26. Jung, S., Hemmatian, T., Song, E., Lee, K., Seo, D., Yi, J., and Kim, J., “Disinfection Treatments of Disposable Respirators Influencing the Bactericidal/Bacteria Removal Efficiency, Filtration Performance, and Structural Integrity,” Polymers, Vol. 13, No. 1, 2021, pp. 45.
  •  
  • 27. He, W., Guo, Y., Gao, H., Liu, J., Yue, Y., and Wang, J., “Evaluation of Regeneration Processes for Filtering Facepiece Respirators in Terms of the Bacteria Inactivation Efficiency and Influences on Filtration Performance,” ACS Nano, Vol. 14, No. 10, 2020, pp. 13161-13171.
  •  
  • 28. Grillet, A.M., Nemer, M.B., Storch, S., Sanchez, A.L., Piekos, E.S., Leonard, J., Hurwitz, I., and Perkins, D.J., “COVID-19 Global Pandemic Planning: Performance and Electret Charge of N95 Respirators after Recommended Decontamination Methods,” Experimental Biology and Medicine, Vol. 246, No. 6, 2020, pp. 740-748.
  •  

This Article

Correspondence to

  • Sam S. Yoon **, Min Wook Lee *
  • * Institute of Advanced Composite Materials, Korea Institute of Science and Technology, Jeonbuk 55324, Korea
    ** School of Mechanical Engineering, Korea University, Seoul 02841, Korea Climate Change Technology Research Division, Korea

  • E-mail: skyoon@korea.ac.kr, mwlee0713@kist.re.kr