Original Article
  • Thermal Properties of Diglycidyl Ether of Terephthalylidene-bis-(4-amino-3-methylphenol)
  • Ha-Neul Hyun*, Ji-Woo Choi*, Seung-Hyun Cho*†

  • Department of Organic Materials and Fiber Engineering, Soong-sil University

  • Diglycidyl ether of terephthalylidene-bis-(4-amino-3-methylphenol)의 열적 성질에 대한 연구
  • 현하늘*· 최지우* · 조승현*†

  • This article is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

References
  • 1. Hwangbo, S., and Cho, S.H., “Thermal Decomposition Behavior of LCT Composites Using Boron Nitride Filler,” Textile Science and Engineering, Vol. 55, No. 1, 2018, pp. 35-40.
  •  
  • 2. Tanaka, S., Hojo, F., Takezawa, Y., Kanie, K., and Muramatsu, A., “Highly Oriented Liquid Crystalline Epoxy Film: Robust High Thermal-Conductive Ability,” ACS Omega, Vol. 3, No. 3, 2018, pp. 3562-3570.
  •  
  • 3. Fu, Y.X., He, Z.X., Mo, D.C., and Lu, S.S., “Thermal Conductivity Enhancement with Different Fillers for Epoxy Resin Adhesives,” Applied Thermal Engineering, Vol. 66, No. 1-2, 2014, pp. 493-498.
  •  
  • 4. Bhattacharya, S.K., and Tummala, R.R., “Integral Passives for Next Generation of Electronic Packaging: Application of Epoxy/Ceramic Nanocomposites as Integral Capacitors,” Microelctronics Journal, Vol. 32, No. 1, 2001, pp. 11-19.
  •  
  • 5. Liang, Y., Zhang, J., Li, M., Guo, Y., and Yuan, J., “Thermal Analysis of the Heat Exchanger for Power Electronic Device with Higher Power Density,” Przeglad Elektrotechniczny, Vol. 18, No. 12, 2012, pp. 328-332.
  •  
  • 6. Yun, C.S., Malberti, P., Ciappa, M., and Fichtner, W., “Thermal Component Model for Electrothermal Analysis of IGBT Module Systems,” IEEE Transactions on Advanced Packaging, Vol. 24, No. 3, 2001, pp. 401-406.
  •  
  • 7. Prasher, R., “Thermal Interface Materials: Historical Perspective, Status, and Future Directions,” Proceedings of the IEEE, Vol. 94, No. 8, 2006, pp. 1571-1586.
  •  
  • 8. Jo, H.S., Kang, H.Y., and Lee, G.W., “Measurement and Evaluation of Thermal Expansion Coefficients of Micrometer-sized SiO2 Particle-reinforced Epoxy Composites,” Transactions of the Koreans Society of Mechanical Engineers, Vol. 39, No. 2, 2015, pp. 129-135.
  •  
  • 9. Fang, L., Wu, C., Qian, R., Xie, L., Yang, K., and Jiang, P., “Nano-micro Structure of Functionalized Boron Nitride and Aluminum Oxide for Epoxy Composites with Enhanced Conductivity and Breakdown Strength,” RSC Advances, Vol. 4, No. 40, 2014, pp. 21010-21017.
  •  
  • 10. Lu, D., and Wong, C.P., Materials for Advanced Packaging, Springer, 2nd ed, 2017, pp. 28-31.
  •  
  • 11. Moon, H.J., Kim, K.H., Hwangbo, S., and Cho, S.H., “Thermal Decomposition Activation Energy of Liquid Crystalline Epoxy Composite with Zirconia Filler,” Textile Science and Engineering, Vol. 52, No. 3, 2015, pp. 206-214.
  •  
  • 12. Ku, M.Y., Kim, J.H., Kang, H.Y., and Lee, G.W., “Measurement of Mechanical Property and Thermal Expansion Coefficient of Carbon-Nanotube-Reinforced Epoxy Composites,” Transactions of the Korean Society of Mechanical Engineers, Vol. 37, No. 5, 2013, pp. 657-664.
  •  
  • 13. Heo, G.Y., and Rhee, H.Y., “Influence of Alkylation on Interface and Thermal Conductivity of Multi-walled Carbon Nanotubes-reinforced Epoxy Resin,” Polymer, Vol. 35, No. 6, 2011, pp. 548-552.
  •  
  • 14. Choi, J.R., and Park, S.J., “A Study on Thermal Conductivity and Fracture Toughness of Alumina Nanofibers and Powders-filled Epoxy Matrix Composites”, Polymer(Korea), Vol. 37, No. 1, 2013, pp. 47-51.
  •  
  • 15. Burger, N., Laachachi, A., Ferriol, M., Lutz, M., Toniazzo, V., and Ruch, D., “Reviews of Thermal Conductivity in Composites: Mechanisms, Parameters and Theory,” Progress in Polymer Science, Vol. 61, 2016, pp. 1-28.
  •  
  • 16. Wang, F., Drzal, L.T., Qin, Y., and Huang, Z., “Mechanical Properties and Thermal Conductivity of Graphene Nanoplatelet/epoxy Composites,” Journal of Materials Science, Vol. 50, No. 3, 2015, pp. 1082-1093.
  •  
  • 17. Kim, B.A., and Moon, C.K., “Effect of TiO2 Particle Size and Content on the Mechanical Properties of TiO2/Epoxy Composites,” Journal of the Korean Society for power System Engineering, Vol. 21, No. 1, 2017, pp. 11-17.
  •  
  • 18. Lee, J.Y., Shim, M.J., and Kim, S.W., “Synthesis of Liquid Crystalline Epoxy and Its Mechanical and Electrical Characteristics-Curing Reaction of LCE with Diamines by DSC Analysis,” Journal of Applied Polymer Science, Vol. 83, No. 11, 2002, pp. 2419-2425.
  •  
  • 19. Kim, Y.C., Orh, J.B., and Lee, B.J., “Synthesis and Characterization of Liquid Crystalline Epoxy Acrylate,” Journal of Korean Industrial and Engineering Chemistry, Vol. 13, No. 6, 2002, pp. 538-543.
  •  
  • 20. Song, T., Li, Z., Kiu, J., and Yang, S., “Synthesis, Characterization and Properties of Novel Crystalline Epoxy Resin with Good Melt Flowability and Flame Retardancy Based on an Asymmetrical Biphenyl Unit,” Polymer Science, Ser. B., Vol. 55, No. 3-4, 2013, pp. 147-157.
  •  
  • 21. Su, W.F.A., Chen, K.C., and Tseng, S.Y., “Effects of Chemical Structure Changes on Thermal Mechanical, and Crystalline Properties of Rigid Rod Epoxy Resins,” Journal of Applied Polymer, Vol. 78, No. 2, 2000, pp. 446-451.
  •  
  • 22. Li, Y., Badrinarayanan, P., and Kessler, M.R., “Liquid Crystalline Epoxy Resin Based on Biphenyl Mesogen: Thermal Characterization,” Polymer, Vol. 54, No. 12, 2013, pp. 3017-3025.
  •  
  • 23. Young, R.J., and Lovell, P.A., Introduction to Polymers,” Journal of the Korean Society for Composite Materials, CRC Press, 3rd Ed., 2011.
  •  
  • 24. Donald, A.M., Windle, A.H., and Hanna, S., Liquid Crystalline Polymers, Cambridge, 2nd Ed., 2006.
  •  
  • 25. Blumstein, A., Liquid Crystalline Order in Polymers, Elsevier Science, 2015.
  •  
  • 26. Harada, M., Hamaura, N., Ochi M., and Agari, Y., “Thermal Conductivity of Liquid Crystalline Epoxy/BN Filler Composites Having ordered Network Structure,” Composites Part B, Vol. 55, 2013, pp. 306-313.
  •  
  • 27. Kim, Y., Jung, J., Yeo, H., You, N., Jang, S. G., Ahn, S., Lee, S.H., and Goh, M.J., “Development of Highly Thermal Conductive Liquid Crystalline Epoxy Resins for High Thermal Dissipation Composites,” Composites Research, Vol. 30, No. 1, 2017, pp. 1-6.
  •  
  • 28. Park, S.J., Kim, H.C., Lee, H.I., and Suh, D.H, “Thermal Stability of Imidized Epoxy Blends Initiated by N-Benzylpyrazinium Hexafluoroantimonate Salt,” Macromolecules, Vol. 34, No. 22, 2001, pp. 7573-7575.
  •  
  • 29. Islal, A.M., Lim, H., You, N.H., Ahn, S., Goh, M., Hahn, J.R., Yeo, H., and Jang, S.G., “Enhanced Thermal Conductivity of Liquid Crystalline Epoxy Resin using Controlled Linear Polymerization,” ACS Macro Letters, Vol. 7, No. 10, 2018, pp. 1180-1185.
  •  
  • 30. Jung, Y.J., Hyun, H.N., and Cho, S.H., “Thermal Decomposition Activation Energy of Liquid Crystalline Epoxy using Cationic Initiator,” Composites Research, Vol. 34, No. 3, 2021, pp. 180-185.
  •  
  • 31. Pascault, J.P., Sautereau, H., Verdu, J., and Williams, R.J.J., Thermosetting Polymers, CRC Press, 1st Ed., 2002.
  •  
  • 32. Harada, M., Ochi, M., Tobita, M., Kimura, T., Ishigaki, T., Shimoyama, N., and Aoki, H., “Thermomechanical Properties of Liquid-crystalline Epoxy Networks Arranged by a Magnetic Field,” Journal of Polymer Science: Part B: Polymer Physics, Vol. 42, No. 5, 2004, pp. 758-765.
  •  
  • 33. Lee, S.H., Kim, J.I., Park, C.S., Lee, S.B., Kim, J.H., and Kim, M.S., “Preparation of Intercross-linked Poly(L-lactide) and Epoxy Resin Using N-benzyl Pyrazine Hexafluoroantimonate,” Journal of Polylmer Research, Vol. 20, No. 11, 2013, pp. 1-6.
  •  
  • 34. Kim, Y.C., Park, S.J., and Lee, J.R., “Effects of N-Benzylpyrazinium Hexafluoroantimonate Concentration on Rheological Properties in Cationic Epoxy Cure System,” Polymer Journal, Vol. 29, No. 9, 1997, pp. 759-765.
  •  
  • 35. Madsen, L.A., Dingemans, T.J., Nakata, M., and Samulski, E.T., “Thermotropic Biaxial Nematic Liquid Crystals,” Physical Revies Letters, Vol. 92, No. 14, 2004, pp. 145505.
  •  
  • 36. Lin, Q., Yee, A.F., Earls, J.D., Hefner Jr, R.E., and Sue, H.J., “Phase Transformations of a Liquid Crystalline Epoxy during Curing,” Polymer, Vol. 35, No. 12, 1994, pp. 2679-2682.
  •  
  • 37. Park, Y.B., Yang, H.J., Kweon, J.H., Choi, J.H., and Cho, H.I., “Flash Method of Determining Thermal Diffusivity, Heat Capacity, and Thermal Conductivity,” Journal of Applied Physics, Vol. 32, No. 9, 1961, pp. 1679-1684.
  •  
  • 38. Wen, S., Liu, Y., Kaptay, G., and Du, Y., “A New Model to Describe Composition and Temperature Dependence of Thermal Conductivity for Solution Phases in Binary Alloys,” Journal of Materials Science & Technology, Vol. 59, 2020, pp. 72-82.
  •  

This Article

Correspondence to

  • Seung-Hyun Cho
  • Department of Organic Materials and Fiber Engineering, Soong-sil University

  • E-mail: scho@ssu.ac.kr