Review Article
  • Design and Manufacturing of Mechanical Metamaterials: A Review
  • Min-Kyeom Kim*, Seunghyun Kim*, Jae-Won Yun*, Jeong-Hyo Gyun*, Min-Jun Kwak*, Yea-Lin Ahn*, Chan-Wook Park*, Youn-Chul Kim**, Jonghwan Suhr*,***†

  • * Department of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Korea
    ** School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Korea
    *** Department of Polymer Science & Engineering, Sungkyunkwan University, Suwon 16419, Korea

  • 기계적 메타물질 설계 및 제조방안
  • 김민겸*· 김승현*· 윤재원*· 정효균*· 곽민준*· 안예린*· 박찬욱*· 김윤철**· 서종환*,***†

  • This article is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

References
  • 1. R.S. Kshetrimayum, “A Brief Intro to Metamaterials,” IEEE Potentials, Vol. 23, No. 5, 2004, pp. 44-46.
  •  
  • 2. V.G. Veselago, “Electrodynamics of Substances with Simultaneously Negative and”, Usp. Fiz. Nauk, Vol. 92, No. 7, 1967, pp. 517–526.
  •  
  • 3. J.B. Pendry, A.J. Holden, D.J. Robbins, and W. Stewart, “Magnetism from Conductors and Enhanced Nonlinear Phenomena,” IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 11, 1999, pp. 2075-2084.
  •  
  • 4. J.B. Pendry, “Negative Refraction Makes a Perfect Lens,” Physical Review Letters, Vol. 85, No. 18, 2000, pp. 3966.
  •  
  • 5. M. Brun, S. Guenneau, and A.B. Movchan, “Achieving Control of In-plane Elastic Waves,” Applied Physics Letters, Vol. 94, No. 6, 2009, 061903.
  •  
  • 6. T.J. Rainsford, S.P. Mickan, and D. Abbott, “T-ray Sensing Applications: Review of Global Developments,” Smart Structures, De-vices, and Systems II, Vol. 5649, 2005, pp. 826-838.
  •  
  • 7. K.B. Alici and E. Özbay, “Radiation Properties of a Split Ring Resonator and Monopole Composite,” Physica Status Solidi (b), Vol. 244, No. 4, 2007, pp. 1192-1196.
  •  
  • 8. M. Kadic, G.W. Milton, M. van Hecke, and M. Wegener, “3D Metamaterials,” Nature Reviews Physics, Vol. 1, No. 3, 2019, pp. 198-210.
  •  
  • 9. R. Panwar and J.R. Lee, “Recent Advances in Thin and Broadband Layered Microwave Absorbing and Shielding Structures for Commercial and Defense Applications,” Functional Composites and Structures, Vol. 1, No. 3, 2019, 032001.
  •  
  • 10. J.J. do Rosário, E.T. Lilleodden, M. Waleczek, R. Kubrin, A.Y. Petrov, P.N. Dyachenko, J.E. Sabisch, K. Nielsch, N. Huber M. Eich, and G.A. Shcmeider, “Self‐Assembled Ultra High Strength, Ultra Stiff Mechanical Metamaterials Based on Inverse Opals,” Ad-vanced Engineering Materials, Vol. 17, No. 10, 2015, pp. 1420-1424.
  •  
  • 11. K. Bertoldi and M. Boyce, “Mechanically Triggered Transformations of Phononic Band Gaps in Periodic Elastomeric Structures,” Physical Review B, Vol. 77, No. 5, 2008, 052105.
  •  
  • 12. S. Babaee, P. Wang, and K. Bertoldi, “Three-dimensional Adaptive Soft Phononic Crystals,” Journal of Applied Physics, Vol. 117, No. 24, 2015, 244903.
  •  
  • 13. D. Mousanezhad, S. Babaee, R. Ghosh, E. Mahdi, K. Bertoldi, and A. Vaziri, “Honeycomb Phononic Crystals with Self-similar Hi-erarchy,” Physical Review B, Vol. 92, No. 10, 2015, 104304.
  •  
  • 14. K. Bertoldi and M.C. Boyce, “Wave Propagation and Instabilities in Monolithic and Periodically Structured Elastomeric Materials Undergoing Large Deformations,” Physical Review B, Vol. 78, No. 18, 2008, 184107.
  •  
  • 15. C.A. Steeves and A.G. Evans, “Optimization of Thermal Protection Systems Utilizing Sandwich Structures with Low Coefficient of Thermal Expansion Lattice Hot Faces,” Journal of the American Ceramic Society, Vol. 94, No. S1, 2011, pp. s55-s61.
  •  
  • 16. G. Lin, J. Li, P. Chen, W. Sun, S.A. Chizhik, A.A. Makhaniok, G.B. Melnikova, and T.A. Kuznetsova, “Buckling of Lattice Col-umns Made from Three-dimensional Chiral Mechanical Metamaterials,” International Journal of Mechanical Sciences, Vol. 194, 2021, 106208.
  •  
  • 17. J. Berger, H. Wadley, and R. McMeeking, “Mechanical Metamaterials at the Theoretical Limit of Isotropic Elastic Stiffness,” Nature, Vol. 543, No. 7646, 2017, pp. 533-537.
  •  
  • 18. T. Frenzel, M. Kadic, and M. Wegener, “Three-dimensional Mechanical Metamaterials with a Twist,” Science, Vol. 358, No. 6366, 2017, 1072-1074.
  •  
  • 19. T.A. Schaedler, A.J. Jacobsen, A. Torrents, A.E. Sorensen, J. Lian, J.R. Greer, L. Valdevit, and W.B. Carter, “Ultralight metallic Mi-crolattices,” Science, Vol. 334, No. 6058, 2011, pp. 962-965.
  •  
  • 20. L. Dong, “Mechanical Responses of Ti-6Al-4V Cuboctahedral Truss Lattice Structures,” Composite Structures, Vol. 235, 2020, 111815.
  •  
  • 21. V.S. Deshpande, N.A. Fleck, and M.F. Ashby, “Effective Properties of the Octet-truss Lattice Material,” Journal of the Mechanics and Physics of Solids, Vol. 49, No. 8, 2001, pp. 1747-1769.
  •  
  • 22. L. Yang, O. Harrysson, H. West, and D. Cormier, “Mechanical Properties of 3D Re-entrant Honeycomb Auxetic Structures Real-ized via Additive Manufacturing,” International Journal of Solids and Structures, Vol. 69, 2015, pp. 475-490.
  •  
  • 23. J. Zhang, G. Lu, Z. Wang, D. Ruan, A. Alomarah, and Y. Durandet, “Large Deformation of an Auxetic Structure in Tension: Ex-periments and Finite Element Analysis,” Composite Structures, Vol. 184, 2018, pp. 92-101.
  •  
  • 24. E. Barchiesi, M. Spagnuolo, and L. Placidi, “Mechanical Metamaterials: a State of the Art,” Mathematics and Mechanics of Solids, Vol. 24, No. 1, 2019, 212-234.
  •  
  • 25. R. Lakes, “Foam Structures with a Negative Poisson's Ratio,” Science, Vol. 235, No. 4792, 1987, pp. 1038-1041.
  •  
  • 26. T.-C. Lim, “Auxetic Materials and Structures,” Springer, 2015.
  •  
  • 27. G.N. Greaves, A. Greer, R.S. Lakes, and T. Rouxel, “Poisson's Ratio and Modern Materials,” Nature Materials, Vol. 10, No. 11, 2011, pp. 823-837.
  •  
  • 28. R. Lakes and K. Elms, “Indentability of Conventional and Negative Poisson's Ratio Foams,” Journal of Composite Materials, Vol. 27, No. 12, 1993, pp. 1193-1202.
  •  
  • 29. R. Lakes, “Design Considerations for Materials with Negative Poisson’s Ratios,” Journal of Mechanical Design, Vol. 115, No. 4, 1993, pp. 696-700.
  •  
  • 30. F. Scarpa and P. Tomlin, “On the Transverse Shear Modulus of Negative Poisson’s Ratio Honeycomb Structures,” Fatigue & Frac-ture of Engineering Materials & Structures, Vol. 23, No. 8, 2000, pp. 717-720.
  •  
  • 31. M. Bianchi, F.L. Scarpa, and C.W. Smith, “Stiffness and Energy Dissipation in Polyurethane Auxetic Foams,” Journal of Materials Science, Vol. 43, No. 17, 2008, pp. 5851-5860.
  •  
  • 32. X. Zheng, H. Lee, T.H. Weisgraber, M. Shusteff, J. DeOtte, E.B. Duoss, J.D. Kuntz, M.M. Biener, Q. Ge, J.A. Jackson, S.O. Ku-cheyev, N.X. Fang, and C.M. Spadaccini, “Ultralight, Ultrastiff Mechanical Metamaterials,” Science, Vol. 344, No. 6190, 2014, Pp. 1373-1377.
  •  
  • 33. R.J. Nedoushan and W.-R. Yu, “A New Auxetic Structure with Enhanced Stiffness via Stiffened Elliptical Perforations,” Functional Composites and Structures, Vol. 2, No. 4, 2020, 045006.
  •  
  • 34. K. Zied and M. AL-Grafi, “Design of Auxetic Sandwich Panel Faceplates Comprising Cellular Networks with High Stiffness and Negative Poisson’s Ratio,” Advanced Composite Materials, Vol. 24(sup1), 2015, pp. 175-196.
  •  
  • 35. A.A. Zadpoor, “Mechanical Meta-materials,” Materials Horizons, Vol. 3, No. 5, 2016, pp. 371-381.
  •  
  • 36. I. Gibson, D. Rosen, B. Stucker, and M. Khorasani, “Additive Manufacturing Technologies,” Springer2014.
  •  
  • 37. K.V. Wong and A. Hernandez, “A Review of Additive Manufacturing,” SRN Mechanical Engineering, Vol. 2012, 2012, pp. 1-10.
  •  
  • 38. T. Tancogne-Dejean and D. Mohr, E”lastically-isotropic Truss Lattice Materials of Reduced Plastic Anisotropy,” International Journal of Solids and Structures, Vol. 138, 2018, pp. 24-39.
  •  
  • 39. T. Tancogne‐Dejean, M. Diamantopoulou, M.B. Gorji, C. Bonatti, and D. Mohr, “3D Plate‐Lattices: An Emerging Class of Low‐Density Metamaterial Exhibiting Optimal Isotropic Stiffness,” Advanced Materials, Vol. 30, No. 45, 2018, 1803334.
  •  
  • 40. R. Xue, X. Cui, P. Zhang, K. Liu, Y. Li, W. Wu, and H. Liao, “Mechanical Design and Energy Absorption Performances of Novel Dual Scale Hybrid Plate-lattice Mechanical Metamaterials,” Extreme Mechanics Letters, Vol. 40, 2020, 100918.
  •  
  • 41. C. Crook, J. Bauer, A.G. Izard, C.S. de Oliveira, J.M.d.S.e Silva, J. B. Berger, and L. Valdevit, “Plate-nanolattices at the Theoretical Limit of Stiffness and Strength,” Nature Communications, Vol. 11, No. 1, 2020, pp. 1-11.
  •  
  • 42. E. Oh, J. Lee, and J. Suhr, “3D Printable Composite Materials: A Review and Prospective,” Composites Research, Vol. 31, No. 5, 2018, pp. 192-201.
  •  
  • 43. J. Dulieu‐Barton and M. Fulton, “Mechanical Properties of a Typical Stereolithography Resin,” Strain, Vol. 36, No. 2, 2000, 81-87.
  •  
  • 44. S.K. Tiwari, S. Pande, S. Agrawal, and S.M. Bobade, “Selection of Selective Laser Sintering Materials for Different Applications,” Rapid Prototyping Journal, Vol. 21, No. 6, 2015, pp. 630-648.
  •  
  • 45. C.Y. Yap, C.K. Chua, Z.L. Dong, Z.H. Liu, D.Q. Zhang, L.E. Loh, and S.L. Sing, “Review of Selective Laser Melting: Materials and Applications,” Applied Physics Reviews, Vol. 2, No. 4, 2015, 041101.
  •  
  • 46. B. Song, S. Dong, S. Deng, H. Liao, and C. Coddet,” Microstructure and Tensile Properties of Iron Parts Fabricated by Selective Laser Melting,” Optics & Laser Technology, Vol. 56, 2014, pp. 451-460.
  •  
  • 47. Y. Wang, J. Bergström, and C. Burman, “Thermal Fatigue Behavior of an Iron-based Laser Sintered Material,” Materials Science and Engineering: A, Vol. 513, 2009, pp. 64-71.
  •  
  • 48. A.B. Spierings, N. Herres, and G. Levy, “Influence of the Particle Size Distribution on Surface Quality and Mechanical Properties in AM Steel Parts,” Rapid Prototyping Journal, Vol. 17 No. 3, 2011, pp. 195-202.
  •  
  • 49. K. Guan, Z. Wang, M. Gao, X. Li, and X. Zeng, “Effects of Processing Parameters on Tensile Properties of Selective Laser Melted 304 Stainless Steel,” Materials & Design, Vol. 50, 2013, pp. 581-586.
  •  
  • 50. A. Barbas, A.-S. Bonnet, P. Lipinski, R. Pesci, and G. Dubois, “Development and Mechanical Characterization of Porous Titanium Bone Substitutes,” Journal of the Mechanical Behavior of Biomedical Materials, Vol. 9, 2012, pp. 34-44.
  •  
  • 51. B. Vandenbroucke and J.P. Kruth,” Selective Laser Melting of Biocompatible Metals for Rapid Manufacturing of Medical Parts,” Rapid Prototyping Journal, Vol. 13, No. 4, 2007, pp. 196-203.
  •  
  • 52. E. Chlebus, B. Kuźnicka, T. Kurzynowski, and B. Dybała, “Microstructure and Mechanical Behaviour of Ti-6Al-7Nb Alloy Produced by Selective Laser Melting,” Materials Characterization, Vol. 62, No. 5, 2011, pp. 488-495.
  •  
  • 53. L. Zhang, D. Klemm, J. Eckert, Y. Hao, and T. Sercombe, “Manufacture by Selective Laser Melting and Mechanical Behavior of a Biomedical Ti–24Nb–4Zr–8Sn Alloy,” Scripta Materialia, Vol. 65, No. 1, 2011, pp. 21-24.
  •  
  • 54. I. Yadroitsev, A. Gusarov, I. Yadroitsava, and I. Smurov, “Single Track Formation in Selective Laser Melting of Metal Powders,” Journal of Materials Processing Technology, Vol. 210, No. 12, 2010, pp. 1624-1631.
  •  
  • 55. Z. Wang, K. Guan, M. Gao, X. Li, X. Chen, and X. Zeng, “The Microstructure and Mechanical Properties of Deposited-IN718 by Selective Laser Melting,” Journal of Alloys and Compounds, Vol. 513, 2012, pp. 518-523.
  •  
  • 56. L. Rickenbacher, T. Etter, S. Hövel, and K. Wegener, “High Temperature Material Properties of IN738LC Processed by Selective Laser Melting (SLM) Technology,” Rapid Prototyping Journal, Vol. 19, No. 4, 2013, pp. 282-290.
  •  
  • 57. T. Vilaro, C. Colin, J.-D. Bartout, L. Nazé, and M. Sennour, “Microstructural and Mechanical Approaches of the Selective Laser Melting Process Applied to a Nickel-base Superalloy,” Materials Science and Engineering: A, Vol. 534, 2012, pp. 446-451.
  •  
  • 58. F. Wang, “Mechanical Property Study on Rapid Additive Layer Manufacture Hastelloy® X Alloy by Selective Laser Melting Tech-nology,” The International Journal of Advanced Manufacturing Technology, Vol. 58, No. 5-8, 2012, pp. 545-551.
  •  
  • 59. P. Dudek and A. Rapacz-Kmita, “Rapid Prototyping: Technologies, Materials and Advances,” Archives of Metallurgy and Materials, Vol. 61, No. 2A, 2016, pp. 891-896.
  •  
  • 60. N.A. Meisel and C.B. Williams, “Design for Additive Manufacturing: an Investigation of Key Manufacturing Considerations in Multi-material PolyJet 3D Printing,” Proceedings of the 25th Annual International Solid Freeform Fabrication Symposium, Austin (TX), USA, 2014, pp. 747-763.
  •  
  • 61. Y. Heo, S. Iwanaga, and S. Takeuchi, “A Nanochannel Fabrication Technique by Two-photon Direct Laser Writing,” 2012 IEEE 25th International Conference on Micro Electro Mechanical Systems (MEMS), 2012, pp. 997-1000.
  •  
  • 62. A.R. Nassar, E.W. Reutzel, S.W. Brown, J.P. Morgan Jr, J.P. Morgan, D.J. Natale, R.L. Tutwiler, D.P. Feck, and J.C. Banks, “Sens-ing for Directed Energy Deposition and Powder Bed Fusion Additive Manufacturing at Penn State University,” Laser 3D Manu-facturing III, Vol. 9738, 2016, 97380R.
  •  
  • 63. M. Juhasz, R. Tiedemann, G. Dumstorff, J. Walker, A. Du Plessis, B. Conner, W. Lang, and E. MacDonald, “Hybrid Directed En-ergy Deposition for Fabricating Metal Structures with Embedded Sensors,” Additive Manufacturing, Vol. 35, 2020, 101397.
  •  
  • 64. M. Sanami, “Auxetic Materials for Biomedical Applications,” University of Bolton, 2015.
  •  
  • 65. Y. Liu, “Mechanical Properties of a New Type of Plate–lattice Structures,” International Journal of Mechanical Sciences, Vol. 192, 2021, 106141.
  •  
  • 66. A. Riccio, A. Raimondo, A. Sellitto, V. Acanfora, and M. Zarrelli, “Multifunctional Polypropylene Core for Aerospace Sandwich Composite Panels,” Procedia Engineering, Vol. 167, 2016, pp. 64-70.
  •  
  • 67. S. Duan, W. Wen, and D. Fang, “Additively-manufactured Anisotropic and Isotropic 3D Plate-lattice Materials for Enhanced Me-chanical Performance: Simulations & Experiments”, Acta Materialia, Vol. 199, 2020, pp. 397-412.
  •  
  • 68. S.C. Han and K. Kang, “Another Stretching-dominated Micro-architectured Material, Shellular,” Materials Today, Vol. 31, 2019, pp. 31-38.
  •  
  • 69. D.W. Abueidda, M. Elhebeary, C.-S.A. Shiang, S. Pang, R.K.A. Al-Rub, and I.M. Jasiuk, “Mechanical Properties of 3D Printed Polymeric Gyroid Cellular Structures: Experimental and Finite Element Study,” Materials & Design, Vol. 165, 2019, 107597.
  •  
  • 70. S.M. Sajadi, P.S. Owuor, S. Schara, C.F. Woellner, V. Rodrigues, R. Vajtai, J. Lou, D.S. Galvão, C.S. Tiwary, and P.M. Ajayan, “Multiscale Geometric Design Principles Applied to 3D Printed Schwarzites,” Advanced Materials, Vol. 30, No. 1, 2018, 1704820.
  •  
  • 71. S.C. Han, J.W. Lee, and K. Kang, “A New Type Of Low Density Material: Shellular,” Advanced Materials, Vol. 27, No. 37, 2015, pp. 5506-5511.
  •  
  • 72. D.W. Abueidda, M. Bakir, R.K. A. Al-Rub, J.S. Bergström, N.A. Sobh, and I. Jasiuk, “Mechanical Properties of 3D Printed Poly-meric Cellular Materials with Triply Periodic Minimal Surface Architectures,” Materials & Design, Vol. 122, 2017, pp. 255-267.
  •  
  • 73. A. Demharter, “Polyurethane Rigid Foam, a Proven Thermal Insulating Material for Applications Between +130oC and −196oC,” Cryogenics, Vol. 38, No. 1, 1998, pp. 113-117.
  •  
  • 74. J. Lefebvre, B. Bastin, M. Le Bras, S. Duquesne, R. Paleja, and R. Delobel, “Thermal Stability and fire Properties of Conventional Flexible Polyurethane Foam Formulations,” Polymer Degradation and Stability, Vol. 88, No. 1, 2005, pp. 28-34.
  •  
  • 75. C.H. Sung, K.S. Lee, K.S. Lee, S.M. Oh, J.H. Kim, M.S. Kim, and H.M. Jeong,” Sound Damping of a Polyurethane Foam Nano-composite,” Macromolecular Research, Vol. 15, No. 5, 2007, pp. 443-448.
  •  
  • 76. H. Mao, R. Rumpler, M. Gaborit, P. Göransson, J. Kennedy, D. O'Connor, D. Trimble, and H. Rice, “Twist, Tilt and Stretch: From Isometric Kelvin Cells to Anisotropic Cellular Materials,” Materials & Design, Vol. 193, 2020, 108855.
  •  
  • 77. C. Zhou, P. Zhu, X. Liu, X. Dong, and D. Wang, “The Toughening Mechanism of Core-shell Particles by the Interface Interaction and Crystalline Transition in Polyamide 1012,” Composites Part B: Engineering, Vol. 206, 2021, 108539.
  •  
  • 78. A. Alderson and K. Alderson, “Auxetic Materials,” Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aero-space Engineering, Vol. 221, No. 4, 2007, pp. 565-575.
  •  
  • 79. R. Underhill, “Defense Applications of Auxetic Materials,” Advanced Materials, Vol. 1, No. 1, 2014, pp. 7-12.
  •  
  • 80. Z. Wang, A. Zulifqar, and H. Hu, “Auxetic Composites in Aerospace Engineering,” Advanced Composite Materials for Aerospace Engineering, Elsevier, 2016, pp. 213-240.
  •  
  • 81. J. Choi and R. Lakes, “Design of a Fastener Based on Negative Poisson's Ratio Foam,” Cellular Polymers, Vol. 10, No. 3, 1991, pp. 205-212.
  •  
  • 82. M. Ali, M. Zeeshan, S. Ahmed, B. Qadir, Y. Nawab, A.S. Anjum, and R. Riaz, “Development and Comfort Characterization of 2d-woven Auxetic Fabric for Wearable and Medical Textile Applications,” Clothing and Textiles Research Journal, Vol. 36, No. 3, 2018, pp. 199-214.
  •  
  • 83. Y. Jiang, Z. Liu, N. Matsuhisa, D. Qi, W.R. Leow, H. Yang, J. Yu, G. Chen, Y. Liu C. Wan, Z. Liu, and X. Chen, “Auxetic Mechan-ical Metamaterials to Enhance Sensitivity of Stretchable Strain Sensors,” Advanced Materials, Vol. 30, No. 12, 2018, 1706589.
  •  
  • 84. H.W. Kim, T.Y. Kim, H.K. Park, I. You, J. Kwak, J.C. Kim, H. Hwang, H.S. Kim, and U. Jeong, “Hygroscopic Auxetic On-skin Sensors for Easy-to-handle Repeated Daily Use,” ACS Applied Materials & Interfaces, Vol. 10, No. 46, 2018, pp. 40141-40148.
  •  
  • 85. D.J.N. Amorim, T. Nachtigall, and M.B. Alonso, “Exploring Mechanical Meta-material Structures Through Personalised Shoe Sole Design,” Proceedings of the ACM Symposium on Computational Fabrication, 2019, pp. 1-8.
  •  
  • 86. G. Imbalzano, P. Tran, T.D. Ngo, and P.V. Lee, “Three-dimensional Modelling of Auxetic Sandwich Panels for Localised Impact Resistance,” Journal of Sandwich Structures & Materials, Vol. 19, No. 3, 2017, pp. 291-316.
  •  
  • 87. O. Duncan, T. Shepherd, C. Moroney, L. Foster, P.D. Venkatraman, K. Winwood, T. Allen, and A. Alderson, “Review of Auxetic Materials for Sports Applications: Expanding Options in Comfort and Protection,” Applied Sciences, Vol. 8, No. 6, 2018, 941.
  •  
  • 88. A.V. Bulanov and O.A. Bludova, “Using Auxetics for Designing the Coronary Vessels Stents,” Politech. Student J., 2017.
  •  
  • 89. M. Dhanasekar, D. Thambiratnam, T. Chan, S. Noor-E-Khuda, and T. Zahra, “Modelling of Masonry Walls Rendered with Auxetic Foam Layers Against Vehicular Impacts,” The Proceedings of the16th International Brick and Block Masonry Conference, Padova, Italy, 2016, pp. 977-984.
  •  
  • 90. K.E. Evans and K. Alderson, “Auxetic Materials: the Positive Side of Being Negative,” Engineering Science & Education Journal, Vol. 9, No. 4, 2000, pp. 148-154.
  •  
  • 91. M. Avellaneda and P.J. Swart, “Calculating the Performance of 1–3 Piezoelectric Composites for Hydrophone Applications: an Ef-fective Medium Approach,” The Journal of the Acoustical Society of America, Vol. 103, No. 3, 1998, pp. 1449-1467.
  •  
  • 92. A. Alderson, J. Rasburn, S. Ameer-Beg, P.G. Mullarkey, W. Perrie, and K.E. Evans, “An Auxetic Filter: A Tuneable Filter Display-ing Enhanced Size Selectivity or Defouling Properties,” Industrial & Engineering Chemistry Research, Vol. 39, No. 3, 2000, pp. 654-665.
  •  
  • 93. Z. Wang and H. Hu, “Auxetic Materials and Their Potential Applications in Textiles,” Textile Research Journal, Vol. 84, No. 15, 2014, pp. 1600-1611.
  •  
  • 94. J. Donoghue, K. Alderson, and K. Evans, “The Fracture Toughness of Composite Laminates with a Negative Poisson's Ratio,” Phys-ica Status Solidi (b), Vol. 246, No. 9, 2009, pp. 2011-2017.
  •  
  • 95. S. Rana, R. Magalhães, and R. Fangueiro, “Advanced Auxetic Fibrous Structures and Composites for Industrial Applications,” (2017).
  •  
  • 96. [online] Available at: https://3dprinting.com/technology/dlp/
  •  
  • 97. [online] Available at: https://carima.com/IMD
  •  
  • 98. [online] Available at: https://www.xyzprinting.com/ko-KR/product/nobel-superfine
  •  
  • 99. [online] Available at: https://ko.3dsystems.com/3d-printers/figure-4-standalone
  •  
  • 100. [online] Available at: https://www.epmi-impression-3d.com/
  •  
  • 101. [online] Available at: https://ko.3dsystems.com/material-finder?technologies[0]=Selective Laser Sintering(SLS)
  •  
  • 102. [online] Available at: https://formlabs.com/blog/what-is-selective-laser-sintering/
  •  
  • 103. [online] Available at: https://www.materialise.com/en/manufacturing/materials
  •  
  • 104. [online] Available at: https://ko.3dsystems.com/
  •  
  • 105. [online] Available at: https://www.axisproto.com/materials/sla/
  •  
  • 106. [online] Available at: https://uk.3dsystems.com/on-demand-manufacturing/stereolithography-sla/materials
  •  
  • 107. [online] Available at: http://www.uniontech3d.com/product/detail/1703
  •  
  • 108. [online] Available at: https://www.3d-alchemy.co.uk/3d-printing-in-rubber-strong-durable.html
  •  
  • 109. [online] Available at: https://support.formlabs.com/s/article/Using-Flexible-Resin?language=en_US
  •  
  • 110. [online] Available at: https://www.slm-solutions.com
  •  

This Article

Correspondence to

  • Jonghwan Suhr
  • * Department of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Korea
    *** Department of Polymer Science & Engineering, Sungkyunkwan University, Suwon 16419, Korea

  • E-mail: suhr@skku.edu