Original Article
  • Thermal Decomposition Activation Energy of Liquid Crystalline Epoxy using Cationic Initiator
  • Jung Ye Ji*, Ha Nuel Hyun*, Seung Hyun Cho*†

  • * Department of Organic Materials and Fiber Engineering, Soong-sil University

  • 양이온 개시제를 이용한 열경화성 액정 에폭시의 열분해 활성화에너지
  • 정예지*· 현하늘*· 조승현*†

  • This article is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

References
  • 1. Chen, S.C., Wan, C.C., and Wang, Y.Y., “Thermal Analysis of Lithium-ion Batteries”, Journal of Power Soureces, Vol. 140, No. 1, 2005, pp. 111-124.
  •  
  • 2. Kizilel, R., Sabbah, R., Selman, J.R., and Al-Hallaj, S., “An Alternative Cooling System to Enhance the Safety of Li-ion Battery Packs”, Journal of Power Soureces, Vol. 194, No. 2, 2009, pp. 1105-1112.
  •  
  • 3. Choi, J.R., and Park, S.J., “A Study on Thermal Conductivity and Fracture of Alumina Nanofibers and Powders-filled Epoxy Matrix Coposites”, Polymer, Vol. 37, No. 1, 2013, pp. 47-51.
  •  
  • 4. Harada, M., Hamaura, N., Ochi, M., and Agari, Y., “Thermal Conductivity of Liquid Crystalline Epoxy/BN Filler Composites Having Ordered Network Structure”, Composites Part B: Engineering, Vol. 55, 2013, pp. 306-313.
  •  
  • 5. You, J., Dou, L., Hong, Z., Li, G., and Yang, Y., “Recent Trends in Polymer Tandem Solar Cells Research”, Progress in Polymer Science, Vol. 38, No. 12, 2013, pp. 1909-1928.
  •  
  • 6. Yeo, H., Islam, A.M., You, N.H., Ahn, S., Goh, M., Hahn, J.R., and Jang, S.G., “Characteristic Correlation between Liquid Crystalline Epoxy and Alumina Filler on Thermal Conducting Properties”, Composites Science and Technology, Vol. 141, 2017, pp. 99-105.
  •  
  • 7. Yi, J.W., “Trend of Chemical Recycling Technoiogies for Fiber-reinforced Thermoset Composites”, Polymer Science and Technology, Vol. 30, 2019, pp. 503-504.
  •  
  • 8. Seo, D.K., Ha, N.R., Lee, J.H., Park, H.G., and Bae, J.S., “Property Evaluation of Epoxy Resin based Aramid and Carbon Fiber Composite Material”, Textile Coloration and Finishing, Vol. 27, No. 1, 2015, pp. 11-17.
  •  
  • 9. Kwon, W., Lee, M.K., Han, M.W., and Jeong, E.G., “Effect of Polytriazolesulfone Addition on Fracture Toughness of DGEBA Epoxy Resin”, Textile Coloration and Finishing, Vol. 31, No. 2, 2019, pp. 118-126.
  •  
  • 10. Kim, Y., Jung, J., Yeo, H., You, N.H., Jang, S. G., Ahn, S., Lee, S. H., and Goh, M., “Development of Highly Thermal Conductive Liquid Crystalline Epoxy Resins for High Thermal Dissipation Composites”, Composites Research, Vol. 30, No. 1, 2017, pp. 1-6.
  •  
  • 11. Park, J.H., and Cho, S.H., “Thermal Decomposition Behavior of Liquid Crystalline Epoxy-Based Composites”, Textile Science and Engineeringy, Vol, 55, No. 5, 2018, pp. 324-329.
  •  
  • 12. Kim, Y., Jung, J., Yeo, H., You, N.-H., Jang, S.G., Ahn, S., Lee, S. H., and Goh, M., “Development of Highly Thermal Conductive Liquid Crystalline Epoxy Resins for High Thermal Dissipation Composites”, Composites Research, Vol. 30, No. 1, 2017, pp. 1-6.
  •  
  • 13. Ha, S.M., Lee, H.L., Lee, S.G., Kim, B.G., Kim, Y.S., Won, J.C., Choi, W.J., Lee, D.C., and Yoo, Y., “Thermal Conductivity of Graphite Filled Liquid Crystal Polymer Composites and Theoretical Predictions,” Composites Science and Technology, Vol. 88, 2013, pp. 113-119.
  •  
  • 14. Zhang, Z.Y., Zhang, Q.K., Shen, Z., Yu, J.P., Wu, Y.X., and Fan, X.H., “Synthesis and Characterization of New Liquid Crystalline Thermoplastic Elastomers Containing Mesogen-Jacketed Liquid Crystalline Polymers”, Macromolecules, Vol. 49, No. 2, 2016, pp. 475–482.
  •  
  • 15. Hirn, B., Carfagna, C., and Lanzetta, R., “Linear Precursors of Liquid Crystalline Thermosets”, Journal of Materials Chemistry, Vol. 6, No. 9, 1996, pp. 1473-1478.
  •  
  • 16. Choi, J.H., Song, H.J., Jung, J., Yu, J.W., You, N.H., and Goh, M., “Effect of Crosslink Density on Thermal Conductivity of Epoxy/Carbon Nanotube Nanocomposites”, Journal of Applied Polymer Science, Vol. 134, No. 4, 2017, Paper ID. 44253.
  •  
  • 17. Yu, J.W., Jung, J., Choi, Y.M., Choi, J.H., Yu, J., Lee, J.K., You, N. H., and Goh, M., “Enhancement of the Crosslink Density, Glass Transition Tempertature, and Strength of Epoxy Resin by Using Functionalized Graphene Oxide Co-curing Agents”, Polymerer Chemistry, Vol. 7, No. 1, 2016, pp. 36-43.
  •  
  • 18. Park, S.J., Seo, M.K., and Lee, J.R., “Isothermal Cure Kinetics of Epoxy/Phenol-Novolac Resin Blend System Initiated by Cationic Latent Thermal Catalyst”, Journal of Polymer Science Part A: Polymer Chemistry, Vol. 38, No. 16, 2000, pp. 2945-2956.
  •  
  • 19. Kim, Y.C., Park, S.J., and Lee, J.R., “Effects of N-Benzylpyrazinium Hexafluoroantimonate Concentration on Rheological Properties in Cationic Epoxy Cure System”, Polymer Journal, Vol. 29, No. 9, 1997, pp. 759-765.
  •  
  • 20. Islam, A.M., Lim, H., You, N.H., Ahn, S., Goh, M., Hahn, J.R., Yeo, H.M., and Jang, S.G., “Enhanced Thermal Conductivity of Liquid Crystalline Epoxy Resin using Controlled Linear Polymerization”, ACS Macro Letters, Vol. 7, No. 10, 2018, pp. 1180-1185.
  •  
  • 21. Zhang, T., Wu, X., and Luo, T., “Polymer Nanofibers with Outstanding Thermal Conductivity and Thermal Stability: Fundamental Linkage between Molecular Characteristics and Macroscopic Thermal Properties”, The Journal of Physical Chemistry C, Vol. 118, No. 36, 2014, pp. 21148-21159.
  •  

This Article

Correspondence to

  • Seung Hyun Cho
  • * Department of Organic Materials and Fiber Engineering, Soong-sil University

  • E-mail: scho@ssu.ac.kr