Special Issue
  • A Review of Graphene Nanoplatelets in Nanocomposites: Dispersion 
  • Sang-Yu Park*, Ji-Young Hwang*, Young Su Park*, Seung Beom Kang*

  • Center for Carbon Convergence Materials, Korea Institute of Carbon Convergence Technology, Jeonju 54853, Korea

  • 그래핀나노플레이트 나노복합소재 분산법 연구 동향
  • 박상유* · 황지영* · 박영수* · 강승범*

References
  • 1. Yadav, S.K., and Cho, J.W., “Functionalized Graphene Nanoplatelets for Enhanced Mechanical and Thermal Properties of Polyure-thane Nanocomposites,” Applied Surface Science, Vol. 266, 2013, pp. 360-367.
  •  
  • 2. Shao, Y., Zhang, S., Wang, C., Nie, Z., Liu, J., Wang Y., and Lin, Y., “Highly durable Graphene Nanoplatelets Supported Pt Nano-catalysts for Oxygen Reduction,” Journal of Power Sources, Vol. 195, No. 15, 2010, pp. 4600-4605.
  •  
  • 3. King, J.A., Klimek, D.R., Miskioglu, I., and Odegard, G.M., “Mechanical Properties of Graphene Nanoplatelet/Epoxy Composites,” Journal of Applied Sciences, Vol. 128, No. 6, 2013, pp. 4217-4223.
  •  
  • 4. Rashada, M., Pana, F., Tang, A., and Asifd, M., “Effect of Graphene Nanoplatelets Addition on Mechanical Properties of Pure Alu-minum Using a Semi-powder Method,” Progress in Natural Science: Materials International, Vol. 24, No. 2, 2014, pp. 101-108.
  •  
  • 5. Prolongo, S.G., Moriche, R., Jiménez-Suárez, A., Sánchez, M., and Ureña, A., “Advantages and Disadvantages of the Addition of Graphene Nanoplatelets to Epoxy Resins,” European Polymer Journal, Vol. 61, 2014, pp. 206-214.
  •  
  • 6. Yue, L., Pircheraghi, G., Monemian, S.I., and Manas-Zloczower, I., “Epoxy Composites with Carbon Nanotubes and Graphene Na-noplatelets - Dispersion and Synergy Effects,” Carbon, Vol. 78, 2014, pp. 268-278.
  •  
  • 7. Yarmand, H., Gharehkhani, S., Ahmadi, G., Shirazi, S.F.S., Baradaran, S., Montazer E., Zubir, M.N.M., Alehashem, M.S., Kazi, S.N., and Dahari, M., “Graphene Nanoplatelets-silver Hybrid Nanofluids for Enhanced Heat Transfer,” Energy Conversion and Manage-ment, Vol. 100, 2015, pp. 419-428.
  •  
  • 8. Wang, F., Drzal, L.T., Qin, Y., and Huang, Z., “Enhancement of Fracture Toughness, Mechanical and Thermal Properties of Rub-ber/epoxy Composites by Incorporation of Graphene Nanoplatelets,” Composites Part A: Applied Science and Manufacturing, Vol. 87, 2016, pp. 10-22.
  •  
  • 9. Iranmanesh, S., Ong, H. C., Ang, B.C., Sadeghinezhad, E., Esmaeilzadeh, A., and Mehrali M., “Thermal Performance Enhancement of an Evacuated Tube Solar Collector Using Graphene Nanoplatelets Nanofluid,” Journal of Cleaner Production, Vol. 162, 2016, pp. 121-129.
  •  
  • 10. Wang, B., Jiang, R., Song, W., and Liu, H., “Controlling Dispersion of Graphene Nanoplatelets in Aqueous Solution by Ultrasonic Technique,” Russian Journal of Physical Chemistry A, Vol. 91, No. 8, 2017, pp. 1517-1526.
  •  
  • 11. Sharmaa, A., Narsimhachary, D., Sharma, V.M., Sahoo, B., and Paul, J., “Surface Modification of Al6061-SiC Surface Composite through Impregnation of Graphene, Graphite & Carbon Nanotubes via FSP: A Tribological Study,” Surface & Coatings Technology, Vol. 368, 2019, pp. 175-191.
  •  
  • 12. Paszkiewicz, S., Szymczyk, A., Sui, X.M., Wagner, H.D., Linares, A., Ezquerra T.A., and Rosłaniec Z., “Synergetic Effect of Sin-gle-walled Carbon Nanotubes (SWCNT) and Graphene Nanoplatelets (GNP) in Electrically Conductive PTT-block-PTMO Hybrid Nanocomposites Prepared by in situ Polymerization,” Composites Science and Technology, Vol. 118, 2015, pp. 72-77.
  •  
  • 13. Chatterjee, S., Nafezarefi, F., Tai, N.H., Schlagenhauf, L., Nu¨esch, F.A., and Chu, B.T.T., “Size and Synergy Effects of Nanofiller Hybrids Including Graphene Nanoplatelets and Carbon Nanotubes in Mechanical Properties of Epoxy Composites,” Carbon, Vol. 50, 2012, pp. 5380-5386.
  •  
  • 14. Lin, Y., Wood, M., Imasato, K., Kuo, J.J., Lam, D., Mortazavi, N., Slade, T.J., Hodge, S.A., Xi, K., Kanatzidis, M.G., Clarke, D.R., Hersama, M.C., and Snyder, G.J., “Expression of Interfacial Seebeck Coefficient through Grain Boundary Engineering with Mul-ti-Layer Graphene Nanoplatelets,” Energy and Environment Science, Vol. 13, No. 11, 2020, pp. 4114-4121.
  •  
  • 15. Scaffaro, R., Botta, L., Maio, A., and Gallo, G., “PLA Graphene Nanoplatelets Nanocomposites: Physical Properties and Release Ki-netics of an Antimicrobial Agent,” Composites Part B: Engineering, Vol. 109, 2017, pp. 138-146.
  •  
  • 16. Le, J.L., Du, H., and Pang, S.D., “Use of 2-D Graphene Nanoplatelets (GNP) in Cement Composites for Structural Health Evalua-tion,” Composites Part B: Engineering, Vol. 67, 2014, pp. 555-563.
  •  
  • 17. Sun, S., Guo, L., Chang, X., Liu, Y., Niu, S., Lei Y., Liu, T., and Hu, X., “A Wearable Strain Sensor Based on the ZnO/graphene na-noplatelets Nanocomposite with large Linear Working Range,” Journal of Materials Science, Vol. 54, No. 9, 2019, pp. 7048-7061.
  •  
  • 18. Filippidou, M.K., Tegou, E., Tsouti, V., and Chatzandroulis, S., “A Flexible Strain Sensor Made of Graphene Nanoplate-lets/polydimethylsiloxane Nanocomposite,” Microelectronic Engineering, Vol. 142, 2015, pp. 7-11.
  •  
  • 19. Kavan, L., Yum, J.H., Nazeeruddin, M.K., Grätzel, M., “Graphene Nanoplatelet Cathode for Co(III)/(II) Mediated Dye-Sensitized Solar Cells,” ACS Nano, Vol. 5, No. 11, 2011, pp. 9171-9178.
  •  
  • 20. Jeon, I.Y., Zhang, S., Zhang, L., Choi, H.-J., Seo, J.-M., Xia, Z., Dai, L., and Baek, J.-B., “Edge-Selectively Sulfurized Graphene Na-noplatelets as Efficient Metal-Free Electrocatalysts for Oxygen Reduction Reaction: The Electron Spin Effect,” Advanced Matrials, Vol. 25, No. 42, 2013, pp. 6138-6145.
  •  
  • 21. Xiang, J., and Drzal, L.T., “Templated Growth of Polyaniline on Exfoliated Graphene Nanoplatelets (GNP) and Its Thermoelectric Properties,” Polymer, Vol. 53, No. 19, 2012, pp. 4202-4210.
  •  
  • 22. Kavan, L., Yum, J.-H., and Gratze, M., “Graphene Nanoplatelets Outperforming Platinum as the Electrocatalyst in Co-Bipyridine-Mediated Dye-Sensitized Solar Cells,” Nano Letters, Vol. 11, No. 12, 2011, pp. 5501-5506.
  •  
  • 23. Yang, B., Shi, Y., Miao, J.B., Xia, R., Su, L.F., Qian, J.S., Chen, P., Zhang, Q.L., and Liu, J.W., “Evaluation of Rheological and Ther-mal Properties of Polyvinylidene Fluoride (PVDF)/graphene Nanoplatelets (GNP) Composites,” Polymer Testing, Vol. 67, 2018, pp. 122-135.
  •  
  • 24. Watt, E., Abdelwahab, M.A., Snowdon, M.R., Mohanty, A.K., Khalil, H., and Misra, M., “Hybrid Biocomposites from Polypropyl-ene, Sustainable Biocarbon and Graphene Nanoplatelets,” Scientific Reports, Vol. 10, No. 1, 2020, pp. 1-13.
  •  
  • 25. Alam, F., Choosri, M., Gupta, T.K., Varadarajan, K.M., Choia, D., and Kumar, S., “Electrical, Mechanical and Thermal Properties of Graphene Nanoplatelets Reinforced UHMWPE Nanocomposites,” Materials Science & Engineering B, Vol. 241, 2019, pp. 82-91.
  •  
  • 26. Ahmadi-Moghadam, B., Sharafimasooleh, M., Shadlou, S., and Taheri, F., “Effect of Functionalization of Graphene Nanoplatelets on the Mechanical Response of Graphene/epoxy Composites,” Materials & Design, Vol. 66, 2015, pp. 419-428.
  •  
  • 27. Mehrali, M., Sadeghinezhad, E., Latibari, S.T., Kazi, S.N., Mehrali, M., Zubir, M.N.B.M., and Metselaar, H.S.C., “Investigation of Thermal Conductivity and Rheological Properties of Nanofluids Containing Graphene Nanoplatelets,” Nanoscale Research Letter, Vol. 9, No. 1, 2014, pp. 15.
  •  
  • 28. Qin, W., Vautard, F., Drzal, L.T., and Yu, J., “Mechanical and Electrical Properties of Carbon Fiber Composites with Incorporation of Graphene Nanoplatelets at the Fiber-Matrix Interphase,” Composites Part B: Engineering, Vol. 69, 2015, pp. 335-341.
  •  
  • 29. Yadav, S.D., Bhingole, P.P., Chaudhari, G.P., Nath, S.K., and Sommitsch, C., “Hybrid Processing of AZ91 Magnesium Al-loy/nano-Al2O3 Composites,” Key Engineering Materials, Vol. 651-653, 2015, pp. 783-788.
  •  
  • 30. Singh, L.K., Bhadauria, A., and Laha, T., “Comparing the Strengthening Efficiency of Multiwalled Carbon Nanotubes and Graphene Nanoplatelets in Aluminum Matrix,” Powder Technology, Vol. 356, 2019, pp. 1059-1076.
  •  
  • 31. Kamar, N.T., Hossain, M.M., Khomenko, A., Haq, M., Drzal, L.T., and Loos, A., “Interlaminar Reinforcement of Glass Fiber/epoxy Composites with Graphene Nanoplatelets,” Composites: Part A, Vol. 70, 2015, pp. 82-92.
  •  
  • 32. Al-Hamadani, Y.A.J., Chu, K.H., Son, A., Heo, J., Her, N., Jang, M., Park, C.M., and Yoon, Y., “Stabilization and Dispersion of Carbon Nanomaterials in Aqueous Solutions: A Review,” Separation and Purification Technology, Vol. 156, No. 2, 2015, pp. 861-874.
  •  
  • 33. Huang, Y.Y., and Terentjev, E.M., “Dispersion and Rheology of Carbon Nanotubes in Polymers,” International Journal of Material Forming, Vol. 1, No. 2, 2008, pp. 63-74.
  •  
  • 34. Ndlwana, L., Motsa, M.M., and Mamba, B.B., “A Unique Method for Dopamine-cross-linked Graphene Nanoplatelets within Poly-ethersulfone Membranes (GNP-pDA/PES) for Enhanced Mechanochemical Resistance during NF and RO Desalination”, European Polymer Journal, Vol. 136, 2020, pp. 109889.
  •  
  • 35. Baig, Z., Mamat, O., Mustapha, M., Mumtaz, A., Munir, K.S., and Sarfraz, M., “Investigation of Tip Sonication Effects on Structur-al Quality of Graphene Nanoplatelets (GNPs) for Superior Solvent Dispersion,” Ultrason Sonochem, Vol. 45, pp. 133-149.
  •  
  • 36. Ma, P.-C., Siddiqui, N.A., Marom, G., and Kim, J.-K., “Dispersion and Functionalization of Carbon Nanotubes for Polymer-based Nanocomposites: A Review,” Composites: Part A, Vol. 41, No. 10, 2010, pp. 1345-1367.
  •  
  • 37. Paton, K.R., Varrla, E., Backes, C., Smith, R.J., Khan, U., O’Neill, A., Boland, C., Lotya, M., Istrate, O. M., King, P., Higggins, T., Barwich, S., May, P., Puczkarski, P., Ahned, I., Moebius, M., Pettersson, H., Long, E., Coelho, J., O’Brien, S.E., McGuire, E.K., Sanchez, B.M., Duesberg, G.S., McEvoy, N., Pennycook, T.J., Downing, C., Crossley, A., Nicolosi, V., and Coleman, J.N., “Scalable Production of Large Quantities of Defect-free Few-layer Graphene by Shear Exfoliation In Liquids,” Nature Materials, Vol. 13, No. 6, 2014, pp. 624-630.
  •  
  • 38. Zhao, R., Han, Y., He, M., and Li, Y., “Grinding Kinetics of Quartz and Chlorite in Wet Ball Milling,” Powder Technology, Vol. 305, 2017, pp. 418-425.
  •  
  • 39. Rishi, A.M., Kandlikar, S.G., and Gupta, A., “Salt Templated and Graphene Nanoplatelets Draped Copper (GNP draped Cu) Com-posites for Dramatic Improvements in Pool Boiling Heat Transfer,” Scientific Reports, Vol. 10, No. 1, 2020, pp. 11941.
  •  
  • 40. Mao, M., Chen, S., He, P., Zhang, H., and Liu, H., “Facile and Economical Mass Production of Graphene Dispersions and Flakes,” Journal of Materials Chemistry A, Vol. 2, No. 12, 2014, pp. 4132-4135.
  •  
  • 41. Guo, W., and Chen, C, “Fabrication of Graphene/Epoxy Resin Composites with Much Enhanced Thermal Conductivity via Ball Milling Technique,” Journal of Applied Polymer Sciences, Vol. 131, No. 15, 2014, pp. 40565.
  •  
  • 42. Jung, Y., Stevens, E., Ding, B., Kim, S.-D., Woo, S.-K., and Lee, J.-K., “Microstructure and Electrical Conductivity in Shape and Size Controlled Molybdenum Particle Thick Film,” Journal of Materials Science, Vol. 48, No. 10, 2013, pp. 3760-3768.
  •  
  • 43. Cha, J., Kim, J., Ryu, S., and Hong, S.H., “Comparison to Mechanical Properties of Epoxy Nanocomposites Reinforced by Function-alized Carbon Nanotubes and Graphene Nanoplatelets,” Composites Part B: Engineering, Vol. 162, 2019, pp. 283-288.
  •  
  • 44. Cataldo, A., Biagetti, G., Mencarelli, D., Micciulla, F., Crippa, P., Turchetti, C., Pierantoni, L., and Bellucci, S., “Modeling and Elec-trochemical Characterization of Electrodes Based on Epoxy Composite with Functionalized Nanocarbon Fillers at High Concentra-tion,” Nanomaterials, Vol. 10, No. 5, 2020, pp. 850.
  •  
  • 45. Che, W.M., Teh, P.L., Jalilah, A.J., and Yeoh, C.K., “The Effect of the GNP-SDS Loadings on the Properties of the NRL/GNPSDS Composites,” Materials Science and Engineering, Vol. 864, No. 1, 2020, pp. 012140.
  •  
  • 46. Shazali, S.S., Amiri, A., Zubir, M.N.M., Rozali, S., Zabri, M.Z., Sabri, M.F.M., and Soleymaniha, M., “Investigation of the Thermo-physical Properties and Stability Performance of Noncovalently Functionalized Graphene Nanoplatelets with Pluronic P-123 in Dif-ferent Solvents,” Materials Chemistry and Physics, Vol. 206, 2018, pp. 94-102.
  •  
  • 47. Simon, T., Potara, M., Gabudean, A.-M., Licarete, E., Banciu, M., and Astilean, S., “Designing Theranostic Agents Based on Plu-ronic Stabilized Gold Nanoaggregates Loaded with Methylene Blue for Multimodal Cell Imaging and Enhanced Photodynamic Therapy,” ACS Applied Materials & Interfaces, Vol. 7, No. 30, 2015, pp. 16191-16201.
  •  
  • 48. Manta, A., Gresil, M., and Soutis, C., “Infrared Thermography for Void Mapping of a Graphene/epoxy Composite and Its Full‐field Thermal Simulation,” Fatigue & Fracture of Engineering Materials, Vol. 42, No. 7, 2019, pp. 1441-1453.
  •  
  • 49. Ajorloo, M., Fasihi, M., Ohshima, M., and Taki, K., “How are the Thermal Properties of Polypropylene/graphene Nanoplatelet Composites Affected by Polymer Chain Configuration and Size of Nanofiller?,” Materials and Design, Vol. 181, 2019, pp. 108068.
  •  
  • 50. Maiti, S., Shrivastava, N.K., Suin, S., and Khatua, B.B., “Polystyrene/MWCNT/Graphite Nanoplate Nanocomposites: Efficient Elec-tromagnetic Interference Shielding Material through Graphite Nanoplate−MWCNT−Graphite Nanoplate Networking,” ACS Ap-plied Materials & Interfaces, Vol. 5, No. 11, 2013, pp. 4712-4724.
  •  
  • 51. Rane, A.V., Kanny, K., Abitha, V.K., and Thomas S., “Methods for Synthesis of Nanoparticles and Fabrication of Nanocomposites,” Synthesis of Inorganic Nanomaterials, Vol. 5, 2018, pp. 121-139.
  •  
  • 52. Sangermanoa, M., Periolatto, M., Signorea, V., and Spena, P.R. “Improvement of the Water-vapor Barrier Properties of an Uv-cured Epoxy Coating Containing Graphite Oxide Nanoplatelets,” Progress in Organic Coatings, Vol. 103, 2017, pp. 152-155.
  •  
  • 53. Zhang, Y., and Park, S.-J., “Imidazolium-optimized Conductive Interfaces in Multilayer Graphene Nanoplatelet/epoxy Composites for Thermal Management Applications and Electroactive Devices,” Polymer, Vol. 168, 2019, pp. 53-60.
  •  
  • 54. Cha, J., Kim, J., Ryu, S., and Hong, S.H., “Comparison to Mechanical Properties of Epoxy Nanocomposites Reinforced by Function-alized Carbon Nanotubes and Graphene Nanoplatelets,” Composites Part B: Engineering, Vol. 162, 2019, pp. 283-288.
  •  
  • 55. Moriche, R., Prolongo, S.G., Sánchez, M., Jiménez-Suárez, A., Chamizo, F.J., and Ureña, A., “Thermal Conductivity and Lap Shear Strength of GNP/epoxy Nanocomposites Adhesives,” International Journal of Adhesion & Adhesives, Vol. 68, 2016, pp. 407-410.
  •  
  • 56. Ramanathan, T., Stankovich, S., Dikin, D. A., Liu, H., Shen, H., Nguyen, S.T., and Brinson, L.C., “Graphitic Nanofillers in PMMA Nanocomposites-An Investigation of Particle Size and Dispersion and Their Influence on Nanocomposite Properties,” Journal of Polymer Science Part B : Polymer Physics, Vol. 45, No. 15, 2007, pp. 2097-2112.
  •  
  • 57. Hu, H., and Chen, G., “Electrochemically Modified Graphite Nanosheets and Their Nanocomposite Films with Poly(vinyl alcohol),” Polymer Composite, Vol. 31, No. 10, 2010, pp. 1770-1775.
  •  
  • 58. Yang, J., Tian, M., Jia, Q.X., Shi, J.H., Zhang, L.Q., Lim, S.H., Yu, Z.Z., and Mai, Y.W., “Improved Mechanical and Functional Properties of Elastomer/graphite Nanocomposites Prepared by Latex Compounding,” Acta Materialia, Vol. 55, No. 18, 2007, pp. 6372-6382.
  •  
  • 59. Kim, H., and Macosko, C.W., “Morphology and Properties of Polyester/Exfoliated Graphite Nanocomposites”, Macromolecules, Vol. 41, No. 9, 2008, pp. 3317-3327.
  •  
  • 60. Kim, I.H., and Jeong, Y.G., “Polylactide/exfoliated Graphite Nanocomposites with Enhanced Thermal Stability, Mechanical Modu-lus, and Electrical Conductivity,” Journal of Polymer Science: Part B: Polymer Physics, Vol. 48, No. 8, 2010, pp. 850-858.
  •  
  • 61. Wang, L., Hong, J., and Chen, G., “Comparison Study of Graphite Nanosheets and Carbon Black as Fillers for High Density Poly-ethylene,” Polymer Engineering and Science, Vol. 50, No. 11, 2010, pp. 2176-2181.
  •  
  • 62. Srivastava, N.K., and Mehra, R.M., “Study of Structural, Electrical, and Dielectric Properties of Polystyrene/foliated Graphite Nano-composite Developed via in situ Polymerization,” Journal of Applied Polymer Science, Vol. 109, No. 6, 2008, pp. 3991-3999.
  •  
  • 63. Kalaitzidou, K., Fukushima, H., and Drzal, L.T., “A New Compounding Method for Exfoliated Graphite-polypropylene Nanocompo-sites with Enhanced Flexural Properties and Lower Percolation Threshold,” Composites Science and Technology, Vol. 67, No. 10, 2007, pp. 2045-2051.
  •  
  • 64. Wei, K.K., Leng, T.P., Keat, Y.C., Osman, H., and Rasidi, M.S.M., “The Potential of Natural Rubber (NR) in Controlling Morphol-ogy in Twomatrix Epoxy/NR/graphene Nano-platelets (GNP) Systems,” Polymer Testing, Vol. 77, 2019, pp. 105905.
  •  
  • 65. Wang, B., Jiang, R., Song, W., and Liu, H., “Controlling Dispersion of Graphene Nanoplatelets in Aqueous Solution by Ultrasonic Technique,” Russian Journal of Physical Chemistry A, Vol. 91, No. 8, 2017, pp. 1517-1526.
  •  
  • 66. Shakir, M.F., Khan, A.N., Khan, R., Javed, S., Tariq, A., Azeem, M., Riaz, A., Shafqat, A., Cheema, H.M., Akram, M.A., Ahmad, I., and Jan, R., “EMI Shielding Properties of polymer blends with inclusion of graphene nano platelets,” Results in Physics, Vol. 14, 2019, pp. 102365.
  •  
  • 67. Abbaszadeh, M., Krizak, D., Kundu, S., “Layer-by-Layer Assembly of Graphene Oxide Nanoplatelets Embedded Desalination Mem-branes with Improved Chlorine Resistance,” Desalination, Vol. 470, 2019, pp. 114116.
  •  

This Article

Correspondence to

  • Ji-Young Hwang
  • Center for Carbon Convergence Materials, Korea Institute of Carbon Convergence Technology, Jeonju 54853, Korea

  • E-mail: jyhwang@kctech.re.kr