Development of Multiscale Homogenization Model to Predict Thermo-Mechanical Properties of
Nanocomposites including Carbon Nanotube Bundle
Haolin Wang*, Hyunseong Shin**†
* School of Mechanical Engineering, Yeungnam University ** Department of Mechanical Engineering, Inha University
탄소나노튜브 다발을 포함하는 나노복합재료의 열-기계 특성 예측을
위한 멀티스케일 균질화 모델 개발
왕호림*· 신현성**†
References
1. Choi, J., Shin, H., and Cho, M., “A Multiscale Mechanical Model for the Effective Interphase of SWNT/epoxy Nanocomposite”, Polymer, Vol. 89, 2016, pp. 159-171.
2. Salvetat, J., Briggs, G., Bonard, J., Bacsa, R., Kulik, A., Stöckli, T., Burnham, N., and Forró, L., “Elastic and Shear Moduli of Sin-gle-walled Carbon Nanotube Ropes”, Physical Review Letters, Vol. 82, 1999, pp. 944-947.
3. Berber, S., Kwon, Y., and Tomanek, D., “Unusually High Thermal Conductivity of Carbon Nanotubes”, Physical Review Letters, Vol. 84, No. 20, 2000, pp. 4613-4616.
4. Ma, D., Giglio, M., and Manes, A., “An Investigation into Mechanical Properties of the Nanocomposite with Aligned CNT by Means of Electrical Conductivity”, Composites Science and Technology, Vol. 188, 2020, pp. 107993.
5. Khan, S., Pothnis, J., and Kim, J., “Effects of Carbon Nanotube Alignment on Electrical and Mechanical Properties of Epoxy Nanocomposites”, Composites Part A: Applied Science and Manufacturing, Vol. 49, 2013, pp. 26-34.
6. Alian, A., Kundalwal, S., and Meguid, S., “Multiscale Modeling of Carbon Nanotube Epoxy Composites”, Polymer, Vol. 70, 2015, pp. 149-160.
7. Pan, J., and Bian, L., “A Physics Investigation for Influence of Carbon Nanotube Agglomeration on Thermal Properties of Compo-sites”, Materials Chemistry and Physics, Vol. 236, 2019, pp. 121777.
8. Liu, Y., Gao, X., Qian, W., Wang, Y., and Wei, F., “Architectural and Mechanical Performances of Carbon Nanotube Agglomerates Characterized by Compaction Response”, Powder Technology, Vol. 211, No. 2-3, 2011, pp. 226-231.
9. Romanov, V., Lomov, S., Verpoest, I., and Gorbatikh, L., “Stress Magnification due to Carbon Nanotube Agglomeration in Compo-sites”, Composite Structures, Vol. 133, 2015, pp. 246-256.
10. Ki, Y., Lee, M.Y., and Yang, S., “A Molecular Dynamics Simulation Study on the Thermoelastic Properties of Poly-lactic Acid Ste-reocomplex Nanocomposites”, Composites Research, Vol. 31, No. 6, 2018, pp. 371-378.
11. Cho, M., Yang, S., Chang, S., and Yu, S., “A Study on the Prediction of the Mechanical Properties of Nanoparticulate Composites Using the Homogenization Method with the Effective Interface Concept”, International Journal for Numerical Methods in Engi-neering, Vol. 85, No. 12, 2011, pp. 1564-1583.
12. Chang, S., Yang, S., Shin, H., and Cho, M., “Multiscale Homogenization Model for Thermoelastic Behavior of Epoxy-based Compo-sites with Polydisperse SiC Nanoparticles”, Composite Structures, Vol. 128, 2015, pp. 342-353.
13. Jiang, J., Wang, J., and Li, B., “Thermal Expansion in Single-walled Carbon Nanotubes and Graphene: Nonequilibrium Green’s Function Approach”, Physical Review B, Vol. 80, No. 20, 2009, pp. 205429.
14. Farah, S., Anderson, D., and Langer, R., “Physical and Mechanical Properties of PLA, and Their Functions Inwidespread Applica-tions—A Comprehensive Review”, Advanced Drug Delivery Reviews, Vol. 107, 2016, pp. 367-392.
15. Song, Y., Lee, J., Ji, D., Kim, M., Lee, S., and Youn, J., “Viscoelastic and Thermal Behavior of Woven Hemp Fiber Reinforced Poly (lactic acid) Composites”, Composites Part B: Engineering, Vol. 43, No. 3, 2012, pp. 856-860.