Original Article
  • A Review of Mean-Field Homogenization for Effective Physical Properties of Particle-Reinforced Composites
  • Sangryun Lee*, Seunghwa Ryu*

  • * Department of Mechanical Engineering, KAIST

  • 평균장 균질화를 이용한 입자 강화 복합재의 유효 물성치 예측 연구 동향
  • 이상륜* · 유승화*

References
  • 1. Obradovic, J., Boria, S., and Belingardi, G., “Lightweight Design and Crash Analysis of Composite Frontal Impact Energy Absorbing Structures,” Composite Structures, Vol. 94, No. 2, 2012, pp. 423-430.
  •  
  • 2. Immarigeon, J-P., Holt, R.T., Koul, A.K., Zhao, L., Wallace, W., and Beddoes, J.C., “Lightweight Materials for Aircraft Applications,” Materials Characterization, Vol. 35, No. 1, 1995, pp. 41-67.
  •  
  • 3. Imai, T., Sawa, F., Nakano, T., Shimizu, T., Kozako, M., and Tanaka, T., “Effects of Nano- and Micro-filler Mixture on Electrical Insulation Properties of Epoxy Based Composites,” IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 13, No. 2, 2006, pp. 319-326.
  •  
  • 4. Zheng, Y., Kim, C., Wang, G., Wei, P., and Jiang, P., “Epoxy/nano-silica Composites: Curing Kinetics, Glass Transition Tempera-tures, Dielectric, and Thermal-mechanical Performances,” Journal of Applied Polymer Science, Vol. 111, No. 2, 2009, pp. 917-927.
  •  
  • 5. Pan, Y., Igora, L., and Pelegri, A.A., “Numerical Generation of a Random Chopped Fiber Composite RVE and Its Elastic Properties,” Composite Science and Technology, Vol. 68, No. 13, 2008, pp. 2792-2798.
  •  
  • 6. Wang, H.W., Zhou, H.W., Peng, R.D., and Mishnaevsky, L., “Nanoreinforced Polymer Composites: 3D FEM Modeling with Effec-tive Interface Concept,” Composite Science and Technology, Vol. 71, No. 7, 2011, pp. 980-988.
  •  
  • 7. Doghri, I., and Ouaar, A., “Homogenization of Two-phase Elasto-plastic Composite Materials and Structures: Study of Tangent Op-erators, Cyclic Plasticity and Numerical Algorithms,” International Journal of Solids and Structures, Vol. 40, No. 7, 2003, pp. 1681-1712.
  •  
  • 8. Lee, S., Kim, Y., Lee, J., and Ryu, S., “Applicability of the Interface Spring Model for Micromechanical Analyses with Interfacial Im-perfections to Predict the Modified Exterior Eshelby Tensor and Effective Modulus,” Mathematics and Mechanics of Solids, Vol. 24, No. 9, 2019, pp. 2944-2960.
  •  
  • 9. Lee, S., Lee, J., Ryu, B., and Ryu, S., “A Micromechanics-based Analytical Solution for the Effective Thermal Conductivity of Com-posites with Orthotropic Matrices and Interfacial Thermal Resistance,” Scientific Reports, Vol. 8, No. 1, 2018, 7266.
  •  
  • 10. Mortazavi, B., Baniassadi, M., Bardon, J., and Ahzi, S., “Modeling of Two-phase Random Composite Materials by Finite Element, Mori-Tanaka and Strong Contrast Methods,” Composite Part B: Engineering, Vol. 45, No. 1, 2013, pp. 1117-1125.
  •  
  • 11. Giordano, S., and Palla, P.L., “Dielectric behavior of anisotropic inhomogeneities: interior and exterior Eshelby tensors,” Journal of Physics A: Mathematical and Theoretical, Vol. 41, No. 41, 2008, 415205.
  •  
  • 12. Bednarcyk, B.A., Aboudi, J., and Arnold, S.M., “Micromechanics of Composite Materials Governed by Vector Constitutive Laws,” International Journal of Solids and Structures, Vol. 110-111, 2017, pp. 137-151.
  •  
  • 13. Lee, S., Jung, J., and Ryu, S., “Micromechanics-based Prediction of the Effective Properties of Piezoelectric Composite Having Inter-facial Imperfections,” Composite Structures, Vol. 240, 2020, 112076.
  •  
  • 14. Odegard, G.M., “Constitutive Modeling of Piezoelectric Polymer Composites,” Acta Materialia, Vol. 52, No. 18, 2004, pp. 5315-5330.
  •  
  • 15. Huang, J.H., and Kuo, W-S., “Micromechanics Determination of the Effective Properties of Piezoelectric Composites Containing Spatially Oriented Short Fibers,” Acta Materialia, Vol. 44, No. 12, 1996, pp. 4889-4898.
  •  
  • 16. Martínez-Ayuso, G., Friswell, M.I., Adhikari, S., Khodaparast, H.H., and Berger, H., “Homogenization of Porous Piezoelectric Mate-rials,” International Journal of Solids and Structures, Vol. 113-114, 2017, pp. 218-229.
  •  
  • 17. Jung, J., Lee, S., Ryu, B., and Ryu, S., “Investigation of Effective Thermoelectric Properties of Composite with Interfacial Resistance Using Micromechanics-based Homogenisation,” International Journal of Heat and Mass Transfer, Vol. 144, 2019, 118620.
  •  
  • 18. Xu, Y., and Yagi, K., “Automatic FEM Model Generation for Evaluating Thermal Conductivity of Composite with Random Materi-als Arrangement,” Computational Materials Science, Vol. 30, No. 3-4, 2004, pp. 242-250.
  •  
  • 19. Lee, D., and Suh, N., Axiomatic Design and Fabrication of Composite Structures Applications in Robots, Machine Tools, and Auto-mobiles, NY Oxford University Press., New York, USA, 2005.
  •  
  • 20. Kim, Y., Kim, Y., Lee, T-I., Kim, T-S., and Ryu, S., “An Extended Analytic Model for the Elastic Properties of Platelet-staggered Composites and Its Application to 3D Printed Structures,” Composite Structures, Vol. 189, 2018, pp. 27-36.
  •  
  • 21. Mura, T., Micromechanics of Defects in Solids, Kluwer Academic Publishers, Netherlands, 1982.
  •  
  • 22. Benveniste, Y., “A New Approach to the Application of Mori-Tanaka’s Theory in Composite Materials,” Mechanics and Materials, Vol. 6, No. 2, 1987, pp. 147-157.
  •  
  • 23. Hill, R., “A Self-consistent Mechanics of Composite Materials,” Journal of the Mechanics and Physics of Solids, Vol. 13, No. 4, 1965, pp. 213-222.
  •  
  • 24. Castañeda, P.P., and Tiberio, E., “A Second-order Homogenization Method in Finite Elasticity and Applications to Black-filled Elas-tomers,” Journal of the Mechanics and Physics of Solids, Vol. 48, No. 6-7, 2000, pp. 1389-1411.
  •  
  • 25. Wu, L., Noels, L., Adam, L., and Doghri, I., “A Combined Incremental-secant Mean-field Homogenization Scheme with Per-phase Residual Strains for Elasto-plastic Composites,” International Journal of Plasticity, Vol. 51, 2013, pp. 80-102.
  •  
  • 26. Castañeda, P.P., “The Effective Mechanical Properties of Nonlinear Isotropic Composites,” Journal of the Mechanics and Physics of Solids, Vol. 39, No. 1, 1991, pp. 45-71.
  •  
  • 27. Eshelby, J.D., “The Determination of the Elastic Field of an Ellipsoidal Inclusion, and Related Problems,” Proceedings of the Royal Society A, Vol. 241, No. 1226, 1957, pp. 376-396.
  •  
  • 28. Jun, T-S., and Korsunsky, A.M., “Evaluation of Residual Stresses and Strains Using the Eigenstrain Reconstruction Method,” Inter-national Journal of Solids and Structures, Vol. 47, No. 13, 2010, pp. 1678-1686.
  •  
  • 29. Chiu, Y.P., “On the Stress Field due to Initial Strains in a Cuboid Surrounded by an Infinite Elastic Space,” Journal of Applied Me-chanics, Vol. 44, No. 4, 1977, pp. 587-590.
  •  
  • 30. Dvorak, G.J., and Benveniste, Y., “On Transformation Strain and Uniform Fields In Multiphase Elastic Media,” Proceedings of the Royal Society A, Vol. 437, No. 1900, 1992, pp. 291-310.
  •  
  • 31. Lee, S., Lee, J., and Ryu, S., “Modified Eshelby Tensor for an Anisotropic Matrix with Interfacial Damage,” Mathematics and Me-chanics of Solids, Vol. 24, No. 6, 2019, pp. 1749-1762.
  •  
  • 32. Lee, S., and Ryu, S., “Theoretical Study of the Effective Modulus of a Composite Considering the Orientation Distribution of the Fillers and the Interfacial Damage,” European Journal of Mechanics - A Solids, Vol. 72, 2018, pp. 79-87.
  •  
  • 33. Ryu, S., Lee, S., Jung, J., Lee, J., and Kim, Y., “Micromechanics-based Homogenization of the Effective Physical Properties of Com-posites with an Anisotropic Matrix and Interfacial Imperfections,” Frontiers in Materials, Vol. 6, No. 21, 2019, pp. 1-17.
  •  
  • 34. Dunn, M.L., and Taya, M., “Micromechanics Predictions of the Effective Electroelastic Moduli of Piezoelectric Composites,” Inter-national Journal of Solids and Structures, Vol. 30, No. 2, 1993, pp. 161-175.
  •  
  • 35. Fu, H., and Cohen, R.E., “Polarization Rotation Mechanism for Ultrahigh Electromechanical Response in Single-crystal Piezoelec-trics,” Nature, No. 403, No. 6767, 2000, pp. 281-283.
  •  
  • 36. Zhao, L-D., Lo, S-H., Zhang, Y., Sun, H., Tan, G., Uher, C., Wolverton, C., Dravid, V.P., and Kanatzidis, M.G., “Ultralow Thermal Conductivity and High Thermoelectric Figure of Merit in SnSe Crystals,” Nature, No. 508, No. 7496, 2014, pp. 373-377.
  •  
  • 37. Barnett, D.M., and Lothe, J., “Dislocation and Line Charges in Anisotropic Piezoelectric Insulators,” Physics Status Solidi (b), Vol. 67, No. 1, 1975, pp. 105-111.
  •  
  • 38. Duschlbauer, D., Böhm, H.J., and Pettermann, H.E., “Computational Simulation of Composites Reinforced by Planar Random Fi-bers: Homogenization and Localization by Unit Cell and Mean Field Approaches,” Journal of Composite Materials, Vol. 40, No. 24, 2006, pp. 2217-2234.
  •  

This Article

Correspondence to

  • Seunghwa Ryu
  • * Department of Mechanical Engineering, KAIST

  • E-mail: ryush@kaist.ac.kr