Special Issue
  • Triboelectric Nanogenerator Utilizing Metal-to-Metal Surface Contact
  • Jihoon Chung*, Deokjae Heo*, Sangmin Lee*

  • * School of Mechanical Engineering, Chung-ang University
    *† School of Mechanical Engineering, Chung-ang University

  • 금속-금속 표면 접촉을 활용한 정전 소자
  • 정지훈* · 허덕재* · 이상민*

References
  • 1. Gibson, T.L., and Kelly, N.A., “Solar Photovoltaic Charging of Lithium-ion Batteries”, Journal of Power Sources, Vol. 195, No. 12, 2010, pp. 3928-3932.
  •  
  • 2. Yang, B., Lee, C., Xiang, W., Xie, J., He, J.H., Kotlanka, R.K., Low, S.P., and Feng, H., “Electromagnetic Energy Harvesting from Vibrations of Multiple Frequencies,” Journal of Micromechanics and Microengineering, Vol. 19, No. 3, 2009, pp. 035001.
  •  
  • 3. Sholin, V., Olson, J.D., and Carter, S.A., “Semiconducting Polymers and Quantum Dots in Luminescent Solar Concentrators for Solar Energy Harvesting”, Journal of Applied Physics, Vol. 101, No. 12, 2007, pp. 123114.
  •  
  • 4. Jabbar, H., Song, Y.S., and Jeong, T.T., “RF Energy Harvesting System and Circuits for Charging of Mobile Devices,” IEEE Transactions on Consumer Electronics, Vol. 56, No. 1, 2010, pp. 247-253.
  •  
  • 5. Cuadras, A., Gasulla, M., and Ferrari, V., “Thermal Energy Harvesting Through Pyroelectricity,” Sensors and Actuators A: Physical, Vol. 158, No. 1, 2010, pp. 132-139.
  •  
  • 6. Sodano, H.A., Park, G., Leo, D.J., and Inman, D.J., “Use of Piezoelectric Energy Harvesting Devices for Charging Batteries,” in Smart Structures and Materials. International Society for Optics and Photonics, 2003.
  •  
  • 7. Sodano, H.A., Inman, D.J., and Park, G., “Comparison of Piezoelectric Energy Harvesting Devices for Recharging Batteries”, Journal of Intelligent Material Systems and Structures, Vol. 16, No. 10, 2005, pp. 799-807.
  •  
  • 8. Lee, S., Bae, S.-H., Lin, L., Yang, Y., Park, C., Kim, S.-W., Cha, S.N., Kim, H., Park, Y.J., and Wang, Z.L., “Super-Flexible Nanogenerator for Energy Harvesting from Gentle Wind and as an Active Deformation Sensor,” Advanced Functional Materials, Vol. 23, No. 19, 2013, pp. 2445-2449.
  •  
  • 9. Lee, S., Ko, W., and Hong, J., “Enhanced Performance of Triboelectric Nanogenerators Integrated with ZnO Nanowires,” Journal of Nanoscience and Nanotechnology, Vol. 14, No. 12, 2014, pp. 9319-9322.
  •  
  • 10. Fan, F.R., Tian, Z.Q., and Wang, Z.L., “Flexible triboelectric generator,” Nano Energy, Vol. 1, No. 2, 2012, pp. 328-334.
  •  
  • 11. Niu, S., Liu, Y., Wang, S., Lin, L., Zhou, Y.S., Hu, Y., and Wang, Z.L., “Theory of Sliding-Mode Triboelectric Nanogenerators,” Advanced Materials, Vol. 25, No. 43, 2013, pp. 6184-6193.
  •  
  • 12. Yang, Y., Zhang, H., Lin, Z.-H., Zhou, Y.S., Jing, Q., Su, Y., Yang, J., Chen, J., Hu, C., and Wang, Z.L., “Human Skin Based Triboelectric Nanogenerators for Harvesting Biomechanical Energy and as Self-Powered Active Tactile Sensor System,” ACS Nano, Vol. 7, No. 10, 2013, p. 9213-9222.
  •  
  • 13. Dudem, B., Kim, D.H., Mule, A.R., and Yu, J.S., “Enhanced Performance of Microarchitectured PTFE-Based Triboelectric Nanogenerator via Simple Thermal Imprinting Lithography for Self-Powered Electronics,” ACS Applied Materials & Interfaces, Vol. 10, No. 28, 2018, pp. 24181-24192.
  •  
  • 14. Chung, J., Yong, H., Moon, H., Duong, Q.V., Choi, S.T., Kim, D., and Lee, S., “Hand‐Driven Gyroscopic Hybrid Nanogenerator for Recharging Portable Devices”, Advanced Science, Vol. 5, Iss. 11, 2018, pp. 1801054.
  •  
  • 15. Maitra, A., Paria, S., Karan, S.K., Bera, R., Bera, A., Das, A.K., Si, S.K., Halder, L., De, A., and Khatua, B.B., “Triboelectric Nanogenerator Driven Self-Charging and Self-Healing Flexible Asymmetric Supercapacitor Power Cell for Direct Power Generation,” Acs Applied Materials & Interfaces, Vol. 11, No. 5, pp. 5022-5036.
  •  
  • 16. Yang, B., Tao, X.M., and Peng, Z.H., “Upper Limits for Output Performance of Contact-mode Triboelectric Nanogenerator Systems,” Nano Energy, Vol. 57, 2019, pp. 66-73.
  •  
  • 17. Zi, Y., Wu, C., Ding, W., and Wang, Z.L., “Maximized Effective Energy Output of Contact‐Separation‐Triggered Triboelectric Nanogenerators as Limited by Air Breakdown,” Advanced Functional Materials, Vol. 27, No. 24, 2017, pp. 1700049.
  •  
  • 18. Chun, J.S., Ye, B.U., Lee, J.W., Choi, D., Kang, C.-Y., Kim, S.-W., Wang, Z.L., and Baik, J.M., “Boosted Output Performance of Triboelectric Nanogenerator via Electric Double Layer Effect,” Nature Communications, Vol. 7, 2016, pp. 12985.
  •  
  • 19. Liu, W., Wang, Z., Wang, G., Liu, G., Chen, J., Pu, X., Xi, Y., Wang, X., Guo, H., Hu, C., and Wang, X.L., “Integrated Charge Excitation Triboelectric Nanogenerator,” Nature Communications, Vol. 10, 2019, pp. 1426.
  •  
  • 20. Paschen, F., “Ueber die zum Funkenübergang in Luft, Wasserstoff und Kohlensäure bei verschiedenen Drucken erforderliche Poten-tialdifferenz,” Annalen der Physik, Vol. 273, No. 5, 1889, pp. 69-96.
  •  
  • 21. Go, D., and Venkattraman, A., “Microscale Gas Breakdown: Ion-enhanced Field Emission and the Modified Paschen’s Curve,” Journal of Physics D: Applied Physics, Vol. 47, No. 50, 2014, pp. 503001.
  •  
  • 22. Jensen, K.L., “Introduction to the Physics of Electron Emission”, Wiley Online Library, 2017.
  •  

This Article

Correspondence to

  • Sangmin Lee
  • School of Mechanical Engineering, Chung-ang University

  • E-mail: slee98@cau.ac.kr