쾌속조형(Rapid prototyping)기술은 다양한 형태의 재료를 사용하여 초기모형을 제작할 수 있다. Stratasys사의 FDM은 플라스틱 재료로 조형물을 제작하는 대표적인 쾌속조형공정이다. 또한 FDM으로 제작된 부품들은 하중을 받는 구조용 재료로도 사용된다. FDM은 약 300㎛ 두께의 가는 필라멘트의 형태로 일정한 방향으로 재료를 적층하므로, FDM으로 제작된 부품들은 이방성 재료의 성질을 나타낸다. 본 연구에서는 FDM 부품의 인장강도를 예측하기 위한 해석방법을 제시하고자 한다. 복합재를 위한 Classical Lamination Theory를 사용하여 컴퓨터 코드를 작성하였다. FDM 제품의 파괴를 예측하기 위하여 계산코드에 Tsai-Wu failure criterion 이론을 도입하였다. 해석방법에 의해 예상되는 인장강도와 실제 실험으로 얻은 수치를 비교하였다. 예상치가 측정치에 근사한 값을 보이므로 본 계산식의 타당성이 입증되었다. 덧붙여서 FDM의 강도계산과 설계규칙이 웹기반의 제안서비스(FDMAS)에서 제공된다.
쾌속조형(Rapid prototyping)기술은 다양한 형태의 재료를 사용하여 초기모형을 제작할 수 있다. Stratasys사의 FDM은 플라스틱 재료로 조형물을 제작하는 대표적인 쾌속조형공정이다. 또한 FDM으로 제작된 부품들은 하중을 받는 구조용 재료로도 사용된다. FDM은 약 300㎛ 두께의 가는 필라멘트의 형태로 일정한 방향으로 재료를 적층하므로, FDM으로 제작된 부품들은 이방성 재료의 성질을 나타낸다. 본 연구에서는 FDM 부품의 인장강도를 예측하기 위한 해석방법을 제시하고자 한다. 복합재를 위한 Classical Lamination Theory를 사용하여 컴퓨터 코드를 작성하였다. FDM 제품의 파괴를 예측하기 위하여 계산코드에 Tsai-Wu failure criterion 이론을 도입하였다. 해석방법에 의해 예상되는 인장강도와 실제 실험으로 얻은 수치를 비교하였다. 예상치가 측정치에 근사한 값을 보이므로 본 계산식의 타당성이 입증되었다. 덧붙여서 FDM의 강도계산과 설계규칙이 웹기반의 제안서비스(FDMAS)에서 제공된다.
Keywords: