본 연구에서는 복합재료 원통쉘의 구조해석을 통하여 구해진 원통쉘 경사면의 10등분 등간격 9지점의 변형율을 신경회로망의 입력패턴으로 활용하여 원통쉘에 가해진 충격하중 특성을 동시에 추론하였다. 적용된 신경회로망은 Momentum Backpropagation 알고리즘이며, 모멘텀 계수 및 학습율이 학습도에 따라 가변적으로 조정될 수 있도록 프로그램을 개발 적용하였다. Backpropagation 신경회로망의 은닉층은 1층에서 3층까지 별도 프로그램을 개발하여 충격하중 특성추론 학습을 시도하였다. 개발된 신경회로망 프로그램을 적용하여 원통쉘의 충격하중 특성추론 정확도는 1%이내로 학습에 성공하였다. 본 연구 결과 신경회로망을 이용한 복합재료 원통쉘의 충격하중 특성을 추론할 수 있는 역문제 해석이 가능해 졌다.
본 연구에서는 복합재료 원통쉘의 구조해석을 통하여 구해진 원통쉘 경사면의 10등분 등간격 9지점의 변형율을 신경회로망의 입력패턴으로 활용하여 원통쉘에 가해진 충격하중 특성을 동시에 추론하였다. 적용된 신경회로망은 Momentum Backpropagation 알고리즘이며, 모멘텀 계수 및 학습율이 학습도에 따라 가변적으로 조정될 수 있도록 프로그램을 개발 적용하였다. Backpropagation 신경회로망의 은닉층은 1층에서 3층까지 별도 프로그램을 개발하여 충격하중 특성추론 학습을 시도하였다. 개발된 신경회로망 프로그램을 적용하여 원통쉘의 충격하중 특성추론 정확도는 1%이내로 학습에 성공하였다. 본 연구 결과 신경회로망을 이용한 복합재료 원통쉘의 충격하중 특성을 추론할 수 있는 역문제 해석이 가능해 졌다.
Keywords: