본 연구에서는 촉매지지체의 내구성과 내산화성을 향상시키기 위해 활성탄소에 SiC층을 형성하는 것에 관한 수치 모사가 수행되었다. 이영화이메틸규소(DDS)로부터 탄화규소를 활성탄소 기공의 내부에 침투 증착시켜 기공성 구조를 유지하면서 활성탄소에 SiC층이 형성된다. 여러 다른 증착 조건에서 모사된 탄화규소의 물성을 연구함으로써 지지체 제조의 최적 증착 조건을 결정하였다. 정상상태하의 등온 반응기 안에서 대류, 확산 및 반응을 모사하여 시간의 경과에 따른 증착량, 기공 반경, 표면적의 변화 등을 구하였다. DDS의 농도가 낮고 반응압력이 작을수록 시료 기공내에 고른 증착이 얻어졌다. 또한 기공내부 증착에서 입자외부 표면 증착으로 바뀌므로 기공직경과 표면적들이 어느 시점에서 변곡점을 갖는 것이 관찰되었다.
본 연구에서는 촉매지지체의 내구성과 내산화성을 향상시키기 위해 활성탄소에 SiC층을 형성하는 것에 관한 수치 모사가 수행되었다. 이영화이메틸규소(DDS)로부터 탄화규소를 활성탄소 기공의 내부에 침투 증착시켜 기공성 구조를 유지하면서 활성탄소에 SiC층이 형성된다. 여러 다른 증착 조건에서 모사된 탄화규소의 물성을 연구함으로써 지지체 제조의 최적 증착 조건을 결정하였다. 정상상태하의 등온 반응기 안에서 대류, 확산 및 반응을 모사하여 시간의 경과에 따른 증착량, 기공 반경, 표면적의 변화 등을 구하였다. DDS의 농도가 낮고 반응압력이 작을수록 시료 기공내에 고른 증착이 얻어졌다. 또한 기공내부 증착에서 입자외부 표면 증착으로 바뀌므로 기공직경과 표면적들이 어느 시점에서 변곡점을 갖는 것이 관찰되었다.
Keywords: