Chae-Hwan Lim*, Dong-Jun Hong*, Seong-Haeng Heo*, Han-Jun Seo**, Won-Ho Choi***, Seong-Weon Hong***, Hyun-Seok Lee***, Soo-Yong Lee*, **, Young-Woo Nam*, ****†
* Graduate School of Aerospace and Mechanical Engineering, Korea Aerospace University
** Department of Aerospace and Mechanical Engineering, Korea Aerospace University
*** Stealth Technology Section, UCAV Development Team, Korean Air
**** Department of Smart Drone Engineering, Korea Aerospace University
임채환* · 홍동준* · 허성행* · 서한준** · 최원호*** · 홍성원*** · 이현석*** · 이수용*, ** · 남영우*, ****†
This article is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
This study proposes a radar-absorbing structure for the leading edge by combining conductive carbon-based nanoparticles-coated honeycomb core and a multi-layer wave absorbing structure based on metal-coated glass fabric. The honeycomb core induces electromagnetic wave gradual attenuation through absorption and scattering, while multi-layer wave absorbing structure exhibits broadband absorption characteristics. SEM and EDS analyses were performed to investigate the microstructure and particle distribution, and a free-space measurement system was used to evaluate the electromagnetic properties of the metal-coated glass/epoxy composite. In the proposed radar absorbing structure, the honeycomb core contributes to wave attenuation by absorbing and scattering incident electromagnetic waves, and the dielectric loss characteristics of the metal-coated glass fiber further enhance wave absorption efficiency. By applying the proposed structure to a wing leading-edge, we compared its RCS performance under TM and TE polarizations and various incidence angles with those of a conventional model. In the combined design which integrates a conductive nanoparticle-coated honeycomb core and a multi-layer radar absorbing structure, gradual attenuation led to improved RCS performance. Under oblique conditions, additional absorption and scattering provided by the radar absorbing structure further enhanced electromagnetic wave performance compared to the conventional model.
본 연구에서는 전도성 카본계 나노 입자로 코팅된 허니컴 코어와 금속 도금 유리섬유를 활용한 다층형 전파흡수 구조를 결합하여 날개 앞전 전파흡수 구조를 설계하였다. 허니컴 코어는 전자기파 흡수와 산란을 통해 전파 감쇠를 유도하며 다층형 전파흡수 구조는 광대역에서 전파흡수 특성을 발휘한다. SEM과 EDS를 활용하여 미세 구조와 입자 분포를 분석하였으며, 자유공간 측정 장비를 이용해 금속 도금 유리섬유의 전자기적 물성을 평가하였다. 제안된 전파흡수구조에서 허니컴 코어는 전자기파의 흡수와 산란을 통해 전파 감쇠를 일으켰고, 금속 도금 유리섬유의 손실 특성을 활용하여 추가적인 전파흡수 효율 향상에 기여하였다. 본 구조를 날개 앞전 형상에 적용하여 TM 및 TE 편파 모드와 다양한 입사각에 대해 일반적인 모델과 RCS 특성을 비교였다. 전도성 나노 입자가 코팅된 허니컴 코어와 다층형 전파흡수 구조가 결합된 구조에서 점진적인 감쇠를 통해 RCS 성능 향상을 확인하였다. 고각 입사 조건에서 전파흡수 구조의 추가적인 흡수 및 산란으로 일반적인 모델 대비 우수한 전파흡수 성능을 확인하였다.
Keywords: 전파흡수 구조(Radar absorbing structure), 허니컴 코어(Honeycomb core), 전도성 코팅(Conductive coating), 전자기파 감쇠(Electromagnetic wave attenuation)
2025; 38(1): 31-41
Published on Feb 28, 2025
* Graduate School of Aerospace and Mechanical Engineering, Korea Aerospace University
**** Department of Smart Drone Engineering, Korea Aerospace University