Jae-Moon Jeong*, Jingyao Dai**, Luiz Acauan**, Hyunsoo Hong*, Brian L. Wardle**,***, Seong Su Kim*†
* Department of Mechanical Engineering, KAIST
** Aero/Astro, MIT
*** Mechanical Engineering, MIT
정재문* · Jingyao Dai** · Luiz Acauan** · 홍현수* · Brian L Wardle**,*** · 김성수*†
This article is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
In this study, CNT volume fraction, gas permeability, and electrical conductivity of horizontally aligned carbon nanotube (HACNT) nanocomposites were measured and analyzed according to the dilution ratio of epoxy and acetone and the applied pressure. The CNT volume fraction increased with decreasing dilution ratio and increasing pressure, indicating that the viscosity of the epoxy and pressure conditions play an important role in filling the gaps between the CNTs. Gas permeability decreases with increasing pressure, showing that higher pressure effectively improves gas barrier properties. As the dilution ratio decreased and the pressure increased, the electrical conductivity tended to increase, which can be interpreted because of strengthening the electrical connection between CNTs. This study provides important insights for various applications by suggesting the optimal dilution ratio and pressure conditions to achieve the highest performance of HACNT nanocomposites.
본 연구에서는 수평 정렬 탄소나노튜브 나노복합재료(Horizontally Aligned Carbon Nanotube, HACNT)의 에폭시와 아세톤의 희석비율 및 프레스 압력에 따라 CNT 부피분율, 가스 투과도, 전기저항을 측정 및 분석하였다. 연구 결과, 희석비율이 감소하고 프레스 압력이 증가함에 따라 CNT 부피분율은 증가하였고, 이는 에폭시의 점도와 압력 조건이 CNT의 간극을 채우는 데 중요한 역할을 한다는 것을 시사한다. 이에 CNT 부피분율이 증가함에 따라, 전기 저항 및 가스 투과도가 감소하게 되어 최적의 물성을 갖게 된다. 본 연구는 새롭게 제조된 HACNT 나노복합재의 성능을 최적화하기 위한 적절한 희석비율 및 프레스 압력 조건을 제시하여, 다양한 분야에서 잠재적인 활용 가능성을 시사한다.
Keywords: 배터리(Batteries), 산화환원(Redox), 전극(Electrodes), 탄소 나노튜브(Carbon Nanotube, CNT), 에너지 (Energy)
2024; 37(5): 369-374
Published on Oct 31, 2024
Department of Mechanical Engineering, KAIST