Special Issue
  • Stochastic Strength Analysis according to Initial Void Defects in Composite Materials
  • Seung-Min Ji*, Sung-Wook Cho*, S.S. Cheon*†

  • * Department of Mechanical Engineering, Graduated School, Kongju National University

  • 복합재 초기 공극 결함에 따른 횡하중 강도 확률론적 분석
  • 지승민*· 조성욱*· 전성식*†

  • This article is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

This study quantitatively evaluated and investigated the changes in transverse tensile strength of unidirectional fiber-reinforced composites with initial void defects using a Representative Volume Element (RVE) model. After calculating the appropriate sample size based on margin of error and confidence level for initial void defects, a sample group of 5000 RVE models with initial void defects was generated. Dimensional reduction and density-based clustering analysis were conducted on the sample group to assess similarity, confirming and verifying that the sample group was unbiased. The validated sample analysis results were represented using a Weibull distribution, allowing them to be applied to the reliability analysis of composite structures.


본 연구는 Representative Volume Element(RVE) 모델을 사용하여 초기 공극 결함이 있는 단방향 섬유강화 복합재의 횡방향 인장 강도 변화에 대해 정량적 평가 및 조사되었다. 초기 공극 결함을 표본오차와 신뢰 수준을 기준으로 적정 표본의 수가 계산된 후, 총 5000개의 초기 공극 결함이 있는 RVE 모델이 표본 집단으로 생성되었다. 표본 집단은 차원 축소법과 밀도 기반 군집 분석을 통해 유사도 분석이 진행되었으며 편향되지 않은 표본 집단임이 확인 및 검증되었다. 검증된 표본 분석 결과는 복합재 구조의 신뢰성 해석에 적용될 수 있게 Weibull 분포로 표현되었다


Keywords: 대표 체적 요소(Representative volume element), 초기 공극 결함(Initial void defects), t-분포 확률적 임베딩(t-distributed stochastic neighbor embedding), 밀도 기반 군집화(Density-based spatial clustering of applications with noise)

This Article

Correspondence to

  • S.S. Cheon
  • Department of Mechanical Engineering, Graduated School, Kongju National University

  • E-mail: sscheon@kongju.ac.kr